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RESUME

Aveugle égalisation, ou ce qu'on appele
Rexercice & Data est la fonction significative a
transmettre data en trés vite. Ce probleme est
fondamentalement & identifier le linéaire systéme
inconnu sans mesurer systéme prise de puissance. Méme
si le systéme prise de puissance est IID, il devient
trés difficile 3 égaliser aveuglement en cas généraux
ou le systéme n'est pas causal. Quelques travaux
precédents presentaient le plan 4 réduire en minimim

E(yk—ysign(yk))Z,

ot y est 2 égaliseur débit de puissance. Le
renouvellement des palametres de l'égaliseur
s'établissait en on-line operation, ou ils sont
corrigés en petite value a chaque k chance 3 recevoir
le signal. ,

, En ce papier, l'aveugle egaliseur d'off-line
operation aprés enregistrer la longue. suite de systeme
débit de puissance est presenté. Cette off-line
operation va &tre banale dans autres champs sauf
transmettge data ol 1'information faut etre opéfée en
1l'heure reelle. Ce 1l'off-line algorithme accomplit le
application & résoudre

E(y,_ oI, >0)=0 (2#0).

Resultantement, cette idée conduit a la méthode
d'enlever la dépendance entre égaliseur ddbits des
puissances y, . ,

Section 1, on decrit 1l'histoire d'aveugle
egaliseur. Section 2, on discute de deux idées s la
premiére est & &galiser la fonction de probabilité
densité d'égaliseur débit de puissance a cela de
systeme prise de puissance, et la deuxiéme est a
enlever la dependance entre ééaliseur aébits des
puissancese. En section 3, on propose l'off-line
algolithme. En section 4, notre off-line algorithme
est confirmé en cas limite. Section 5, on montre
quelque résultats de la simulation de computeur.

SUMMARY

Blind egualization, or called Retrain on Data is
significant function in high speed data transmission.
This problem is basically to identify the unknown
linear system without measuring system input. Even if
system input is IID, it becomes very difficult to
blind-equalize in general cases where the system is
not causal. Several previous works presented the
scheme to minimize

E(yk—Ysign(yk))zy

where Yy, is equalizer output. The updating of equal-
izer tap-weights was established in on-line operation,
where they are corrected by small increment at - every
kth signal receiving chance.

In this paper, an off-line blind egualization
processed after recording a long time sequence of
system output is‘reported. Such an off-line operation
will be conventional in other fields except data
transmission where the information must be processed
in real time. The present off-line algorithm performs
a contraction mapping to solve

E(yk_llyk>0)=0 (g#0).

Resultantly, this idea leads to a method of removing
time-dependency in equalizer output y, .

Section 1 describes a past history of the blind
equalization. Section 2 discusses the concept of two
ideas; the first is to equalize probability density
function of equalizer output with .that of system

input, and the second is to remove time~dependency in
equalizer output. Section 3 proposes an off-line
algorithm. In section 4, the present off-line algo-

rithm 1is confirmed for the limited case. Section 5
shows the several results of computer simulation.
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1. Introduction

Blind equalization, compelled to converge to an
optimum equalizer state without referring the sending
date sequence, is of interest to research engineers in
several fields : image processing ; signal detection ;

biophysics, in particular, neuro-physiology ; and
statistical mathematics. Starting from the original
work in this subject of the high speed data transmis-

sion by Y.Sato} A.Benveniste framed out the theoreti-
cal structure and his work is appreciated highly? The
blind equalization is called "Retrain on data" in
CCITT V.27 and V.29 recommendations, then, with it
high speed data modems must be equipped. For the data
transmission cases, the original work achieved a blind
equalization with theoretical treatment and computer
simulation under limited situations, where the sending
sequence 1s independent and has identically wuniform
distribution (IID) through the data scrambling and
multi~level coding. The extended and general work by
"A.Benveniste derived theorems for blind egualizable
functionals having the steepest descent lines which
converge to the optimum, and they mean to lighten the
restrictions for sending sequence distribution and
distortion of linear system. A primal difficulty
comes from nonminimum phase property of linear system,
since the system is not causal. In order to overcome
it, new techniques except application of the classical
adaptive linear prediction to the autoregressive sys-
tems had been required.

Denote the distribution of the system input of
IID by v and the equalizer output by y, , the theorem
by A.Benveniste says "If the distribu%ion of yk4isv
too, the linear system must be transparent and y, must
be equal to the system input with time shift amgigui—
ty, where Vv is not Gaussian." Every previous work
intended to force implicitly the equalizer output to
depend on the distribution v, beside directly aiming
intersymbol interference reduction or time independen-
cy in the sequence y, . The problem of blind equaliza-
tion remains a large misterious part. Questions are,

for example, what is solved for the whole permitted
distribution v associated with blind algorithms and,
furthermore, what kind of knowledge of v is substan-

tial for this problem. It is evident that, by means of
any schemes from standpoints of minimizing the corre-
lation E{yk Vi }(9=0), the intersymbol interference
cannot be remoé%d. It should be remarked - that the
independency as

P(yk~ y =constant)=P(yk)
(for all gz0 ahd %he constant is arbitrary)

is equivalent to vanishing intersymbol interference.
This paper presents a new type of off-line algorithm
to realize the above equations. To simplify the algo-
rithm, the estimated averages of each Yy when yk>0
are used to adjust the equalizer parameteré% and iter-
ative contraction toward the optimum is accomplished.
The computer simulation for several typical models are
added.

2. A concept of blind equalization

Presuming that sending data sequence a,_ in Figure
1 1is time independent and has identical distribution,
two strategies stated below have the same destination
that the total responce satisfies

ty # 0, t, =0 (2£0) (£g=Chy_w ). (1)

(1) The first strategy is to equalize the probability
density function (p.d.f.}) of equalizer output Y
with that of a .
(2) The second is remove the time dependency in y, , in
sense that y  is strictly uncorrelated : the p.d.%. of

Ve 9 ( 2#0) is not warped when the subsequence
¥ ¥ s eee, ¥, 1s selected using any rules on the
k= k=g +1 k
val of’ A
The schémes of algolithm design based on above

strategies are different in two cases of application
where p.d.f. of a_ is a priori known and unknown. In
the first application, we can establish the more re-
liable blind equalization using knowledge of the
p.d.f.. Along the first strategy of p.d.f. matching,
for example, the maximum likelihood estimation & of
a after receiving y, will be derived by evalua%ing
tge Y. histogram. Then the equalizer tap-weight
updating schemes _employing the estimated steepest
descent of (y, & )° as in decision directed manner is
one of the possible blind equalization. In general
application cases where the p.d.f. of a 1is unknown,
we cannot take any efficient information of a from a
kth sampling value of y, . Major question in these
situations must be for wgat class of p.d.f. a pre-
sented robust and simple algorithm possesses the de-
sired destination.

The every previous works treated tEe simple algo-
rithm which minimizes E(yk-Ysign(yk)) as

Wy = wem ax (v~ vsign(yy)) (2)
where >

Y = Ela ] / E(s) . (3)

Y.Sato proved that this converges to Eq.(1) in case of
data communication where a _ is uniformly distributed
and initial peak distortion_%dtil/lt | is less than 1.

The extended work by A.Behvéniste derived that the
algorithm of Eq.(2) is one of the possible algorithm
permitted for broader class of a_p.d.f.. The origi-

nal work started from an idea that: since the uniform-
ly distributed a_ is regarded as binary data added by
uniformly distributed source noise, the conventional
binary adaptive equalizer Eq.(2) is expected to smooth

out the source noise and converge to Eg.(1). .From the
distribution matching principle suggested éater by
A.Benveniste, to minimize which

E(y, -vsign(y, ))",

means to minimize the dispersion around some constant
Y in the positive region of y,, should identify

p.d.f. of y, with that of a . To give further discus-

sion for the congept of blind egualization, decompose
E(yk—Ysign(yk)) as follows,

By ~vsign(r))” = EGD ~29Ely [+ 10, @)

From this formula, it is seen that the minimization is
equivalent to maximizing under power constraint

E(yi) = constant , (5)
To see details of Ely.[{(denote ¥.), describe it by
using Efag }(denote'§29 when y. >p where we employ

average when k=0 for %he simplicity of nota-

ensemble
tion. Then we have
and
o = Elygl . )

Providing that the p.d.f. of a_ (denote v ) has zero-
mean and is symmetric, 32 for ¥5>0 is written as
t

_ © AT
a, = falv(al) [p(x)dx da, , (8)
—00 —00
where p(x) is a normalized p.d.f. of all2 ti except
t2 and its variance is determined by 1-t, from unit
power constraint. Let us introduce the following
expression, which is not strictly correct, but, will
be accepted in limited case discussed later.
Unknown
Sending Lineax
Data System Recelving Equalizer Equalizer
Sequence Signal Qutput
h W
k % Xk
ak k yk
Fig.1l Model of egualization system
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= _ 9
a, = u(t,) 9
then
y =Ya = 10
Yo ; a, 4ty gu(t_£+i)ti . (10)
‘It is noted that u(tg) is monotonic and increasing
function of t% and u(0)=0. Substituting power con-—
straint t =1-t¢ to Eq.(10), ?b is derived as
t
_ule) CLC IR T
Yo = ¢ (4 -~ ) . an
0 140 0 i

Out of the second term of Eg.(11), ith component when
t.=0 is to be omitted. From Eq.(l11), it is concluded
‘that the condition

n(ty) w(ty)
— "% > 0 (for all i#0) (12)
. 0 i
is necessary and sufficient in order that maxEly !
gives the desired destination t.=0 (i#0 ). Further®
more, the condition (12) leads to another important
result, i.e., the mean square distortion of ay is
smaller than that of ti.
; “(ti)z .; ti
p (=% — 3y <p (-0 13)
a (e )2 t t2
0 [+]

To find the p.d.f. of a satisfying the global condi-

tion (12) is the problem to give breakthrough toward

blind equalizability and is remained as future prob-

lem. It is easy to examine for the limited case of

local behavior around the solution t,=0 (i # 0) and

t =1. At first ,when t. tends to 1, "denoting delta

0 R 0

function by &(x),

o aoto

ED - yyn [ agvag) f pGodx day /t,
0 t.»l —= —o0

0

- a

Iwao (ao) . {i(x)dx dao
{ v(az) . !i(x)dx d32

)

2 gao (ao)dao

= E(ao) when a0>0 . (14)
The second, when all tgltend to O and tO tends to 1,
4 t
© -27%
u(0)
=lim [ a_,v(a_). [ p(x)dx da_, /t
t2 £ 30 2 =2 o % 2

2

0

= 1im f a_ v(a. ) P(a_ t )/tlda
t +O ©

= lim fwa_zv(a_z){llz + P(0)a_,t,}/t,da,

tzéo
2
= 20(0E(a) . (15)
If v(x)is uniform p.d.f. defined in [~V,V] ,then
1 1
Eq.(14)= E‘V and Eq.(15) = S-V , (16)
are derived and it is said that the condition (12) is
satisfied in the neighborhood of the solution. For
the Gaussian p.d.f.,
1
Eq.(14)=Eq.(15) = v 2 a7
2/ BEy)

is derived. Therefore, from Eq.(11) it is said that
the ambiguity of t. is remained and max E |yol cannot
have the desired deStination.

Now, apart from the first strategy
matching, let us recommend a following simple
rithm along the second strategy

¥, =0 (240 (18)
Equation (10) remarks that the {th expectation a, has

the same polarity of t, . From this fact, according
that Eq.(18) is satisfied and namely the sequence of

of p.d.f.
algo-

for yb>0 .

expectation a, is the inverse of sequence t, , it
is mostly expected that we have the trivial solution
to=0 (220)

3. Off-line algorithm

After receiving long sequence of signal
present algorithm adJusts equalizer tap—welgh% Wy
that time averages Vg (£#0) vanish, where

L

v, = L sign(y)dy (19)
k=1
= . N -
Let xﬁbe time average of xk—l when Yy 0, i.e.,
- L
x, = 1 sig(r)xn , > (20)
k=1
then
= N =
y I w
[ a=—N n &-n
- X Y Z h!L-n--i i
n i
= Z ( z hz—n—iwn)ai
i n
= Lty sa (21
i
While a, and ?Q are evaluated by time averaging, the
equalizer is freezed. Hence, both of them are
functional of equalizer tap-weight wg From this

reason, we must perform W optimization, for example,
repeating _to solve w, satisfying y2~0 (2#0) for the
averaged X __ and to average xk_gyhen yk>0 under the
solvgd wg,. Thus,an off-line procedure 1is described as

Step 1. .calculate time average
5 -1
X, = sign(y, )% _
- K k-2
Step 2. solve W to satisfy
N
Z Xl—n 0 0 (2#0)
n=-N
N (22)
z x LA =1
n——N

and return to step 1.

Through this procedure, the following equivalent one

is implicitly carried.

Step 1. calculate time average

_ L
a, = Z 31gn(yk):=1k_'Q (23)
Step 2. solve ti to satisfy
g a,_;t; =0 (2£0)
(24)
Ja.t =1
LoT-iv
i

and return to step 1.
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Figure 2 illustrates this implicit procedure, where Tr

vand A show responses t, éndbfi respectively obtained
after rth iteration times.
To 1nvest1gate the convergence of the above pro-

cedure, normallze ag and tl by their peaks as ag)/a
and t so that the convergence problem can bé
separaé%ly treated for peaks ao or to and for distor-

tion D, or D_.
t a

Rewrite the interation procedure in Fig. 2 as
AT —> AA ,—>AT ~>AA —>AT
r-1 r-1 r b r+i .
where above functions are defined after each peaks are
subtracted from T , A , etc. and devide them by their

peaks. Hence, acounting that time sequenes are all
real valued, we have, for example
/T /T
S= [ AT dw = 5= [ Re[sT_ldo = 0 (25)
T lnjT * -7/T ’
r 2 2
— E 26
D P - PO . (26)
Now, we must confirm the inequalities
. r-1 r r+1 .
> Dt ?,Dt > D L
Denote peak &f (1+AT]__)—1 by l+6tg , then
/T
r _ AT
Sty Tl Re[I;KEL]dm . (27)
Therefore,
r-1_ r,2 r,2
b, = £H1+ATI] - (st "1/ (1+e5) % (28)

The deviation of peak value from 1 Sto,ls approxlmate—
ly given by

r .
sty = ; tit_g . (29)
i#0

Perform
taking account that the distortion reduction "ratios
through AT —> AA and AT —> A are given by

(<13 &End U (<l} respegtlvely, the reduction
ra%los from 6t to” dak, whose polarities are the same,

is approximated in order of p from Eq.(29), and we
obtain roughly
Dy te WLIIIDE - (stD) 1/ estD? (30)
D§+l= (ol - (553)2]/(1+5?3)2
= 1w, 0T - Wa(sep) 21/ iz e) 2 (31)

Res lgantly, in situations where D? is larger .than

(6t)) %, it can be said that DI*lpr-I
For the peaks tO and ao, the recursive formula is
Step 1
—_ o
Troq Ar—1
Step 2
T Step 1 2
r r
Step 2
T Step 1 2

r+1 = r+1

éi:f/i///////

Implicit procedure of the off-line algorithm

Tr+2

cer e

Fig.2

the similar derivation for AA_ —> AT , and

t0 S + Gr
30
=r _ .r,r
a0 = Mot
r+l_ 1
ty = =r + 6r+1
0
=r+1_ ur+1 r+l
o o %o (32)
r+2 1
0 =r+1 + 6r+2
29
-(dA_/
(8, = 5 a )
l+(AAr/a0)/aO
From these
.
t
r+2 _ 0
to N r+l/ Ty 46 T 6r+2. (33)
“0 +1t0
In Eq.(33), if Gr tends to zero and ﬂr+2 /Hr+1 tends
to 1, it is said that tg converges %o somé finite
value.

4. Analysis in case of uniform p.d.f.

d t,
and [ o33 [t |

The uniqueness that ty=0 (4#0) satisfying y,=0

(2#0) is resulted from the following derivations
(refer Appendix A for several derivations in this
section)
ag = ulggdty 5 ulgy) = ——6(1— 3P (34)
- -
ap = ult_pdt_, wulty) = 3¢, (4#0), (35)
Where Zt / t ,» and
i
Vt i#0 L
Yo T _E_(1+ §Dt) (36)
- g v
v, = (- D) + §E;¢£ (£40) 37

(9, = Ztktk_g )

From above equatlons forc1ng yﬂ to zero and nor-
malizing tg’by the peak to

2¢2

t, = - —— (240) (38)
4 tg(1-D)
are obtained, ?fd in frequency domain

T(w) = KllT(m)Iz + K, (39)

2
SN G (40
K = (3+2D¢) (41)

2 l--Dt

is derived. From Eq.(39), it is concluded that T(y)
must be real valued constant.

According to the investigation of the conver-
gence, at first in step 1, the mean square distortion

decreases by the mapping tl to apas

4D
D, = ——t—s, (42)
2 901~ —D )



Fig.3 Curve of Dt'Da

5. Computer simulations

Several computer simulations are performed, as-
suming simplified response of unknown system. The re—
sponse was fixed as

h .=0.2, h ,=-0.3, h.=1.0, h =0.5, h=0.2 ,
and the number 6% tap-weights was1 7. Time-averaging
was calculated over 20000 samples.

Figure 4 shows the curves of D for the uniform

p.d.f., and Figure 5 shows trajec%ory of Tr(w) at

every even times of iteration. Samely, Figures 6 and
7 are for triangle p.d.f.. In triangle cases, the
degradation of convergence is seen in Fig. 6. The

reason of this degradation is imagined thaty, ( £ #0)
converge too fast to zero and in neighborhood of the
solution the solved tap~-weights have ambiguity caused
by inaccuracy of 20000 times time-averaging. To over-
come this, the following polarity detection was em-—
ployed,

1 if yb
¥y = {o if &yg>-b {45)
-1 if —A>y0

Its simulation result is shown in Fig. 8. The conver-
gence is more rapid than that of Fig. 6.

6. Conclusion

An off-line algorithm based on idea of removing
time-dependency in equalizer output was presented.
Through derivations of the algorithm, several problems
what is substantial for blind equalization was dis-
cussed and some of them was remained for future prob-—
lem. They are
(1) To solve the broad class of p.d.f. in explicit
form satisfying the condition (12).

(2) To confirm whether maximizing E (y.J) under power
constraint implies equivalently §2=O(Z¢ ) or not.

(3) To give a perfect proof of thé convergence of the
off-line algorithm for some general cases of p.d.f..
(4) To find a general method to accelerate the conver-
gence as tried in Fig. 8.
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whose curve is shown in Fig. 3. In step 2, for the D
normalized T_ and Ar’ their inverses are roughly ap- t .
proximated by
-1 _ 1 0.4
e ) = TaT (W
= 1—AAr_1(w) (43) 0.3
and similarly
L) = 1- 44 0.2t
A, (w) =1 ATr+l(w) , (44) .
where A (w) and ATr l(u)) are already normalized as
have not non-zero constant offset. 0.1}
lr. Fermitting above approximation, it is shown that
pa,_,IIAT  lland then HATr_él} >1laT_ I, and that||AT ||
converges to zero (See Appendix B). N " . . .
0 10 20 30 40 50 Iteration
Da Times
| U Fig.4 Evolution of D¢ for uniform p.d.f.
. 74
ol Im
Vi i .
// | i4
// I
s : T, ()
. !
- | T2 (w)
/
s T (W
//, : 4( )
P X )
0 1 Dt o] 1 Re

_i_k

Fig.5 Trajectory of Tr(w) for uniform p.d.f.

40 50 Iteration
Times
Fig.6 Evolution of Dy for triangle p.d.f.

0

Im'
i4
To(w)
T, (w)
T4 (w)
0 1 Re
..i__ .

Fig.7 Trajectory of Tr(w) for triangle p.d.f.
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40 50 Iteration
Times
Fig.8 Evolution of Dy for triangle p.d.f.employing
polarity detection Eq.(45)

-0
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Appendix A
Let each of the sequence {a } be independent and

uniformly distributed on the interval [-V,V]. Assuming
ty> g?étkl’ then
20 = aosign( aktvk)
= 1lim (== 1)2N+l f3051gn( a )da .da
Nooo 2v -v<a cet A <y Ktk N
-N° *ON—
= 1in 9 agdag
N Zakt_ﬁ 0
- Xa { <0aodao]da_N"'da_ldal"-daN
k -k
-y 1
= 2(1-300)

Similarly,

a, = azsign(Zakt_k)

Normalizing as a.=1, we have Egs.(34) and (35). From
these results, we obtain Egs.(38) and (37) as follows

) 3Z otk
k#0

7 =Y 3 = VvV . 1
vo = Lage 2t0(l 300 tote *

_ 1
T2 (l+§Dt)

ve =LAt

vt
L-k
= (1 D Jtot_g * L t_
07 -2 k#% 3t0 k
Vt V)
-2 L
= (1-D ) + EE—

Appendix B
Owing to the approximation as Eqgs.(43)

and (44), in order to show ||AA _1|]>HAT +l[

it is sufficient to prove the fnequality ’

/T
A (w)—l|2dw < %— f ]T
/T* —ﬂ/T

(B-1)

w/T
| (w)-1|2dw

I

mra
=3

or more simply,

|A;l(w)—1| < |T 1(w)—l[ (-7/T < w < w/T)

(B-2)
On the other hand, from Eqs. (34) and (35),
we have
A (w) -1 = a(T (w) -1), (B-3)
where
~ 2
o= . (B~4)
3(1—§Dt)

It is easy to check 2/3 < o <1 for 0 < D, < 1,

under which we discuss the proof of (B-2).
Since Eq. (B-2) is equivalent to

A @-1] |7 @-1]
A S T W (B-5)
r r
then, from Eq. (B-3), the inequality to be

proved becomes as follows

u[Tr(w)I ]Ar(w)| (B-6)
ive.,
2 2 2
|7, (w) | 14, (w | (3-7)
Taking 0,6
lT_(w) [? = 1+p%+2pcos0, (B-8)
|a_ @) |? = 1+a®0%+20pco0s0, (B-9)
we hava
la_w) |2 o?|1_(w)|?
= 1—u2+2a(1—a)pcose . (B-10)

p<l under tg> 3 Itil, we obtain
i

Since

la_) |2 - o?|1_(w)]?
> 1—a2—2a(l-a)

(1-a)% > 0, (B-11)

and the proof is completed.



