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RESUME

Dans ce papier une méthode pour l'estimation de 1l'en-
trée (ou déconvolution) est présentée.

La méthode est basfe principalement sur l'utilisation
d'une certaine paramétrization du mod2le du signal
d'entrée. Pour utiliser cette méthode, nous devons
8tre capable d'exprimer le signal d'entrée en fonction
de quelques paramdtres inconnues et du temps.

L'algorithme est congu pour estimer, simultanément,
les paramétres du signal d'entrée et ceux de la fonc-
tion de transfert du systdme. On se limite & 1'&tude
des syst2mes dont la fonction de transfert ne compor-
tant que des poles (c.3.d modéles ARX). La méthode
peut 8tre &tendue pour consider aussi les zéros de la
fonction de transfert. Il est &vident que ceci en-
traine une augmentation de la charge numérique. L'al-
gorithme est basé sur des méthodes numériques effica-
ces comme par exemple la factorisation QR utilisant
les transformations de Householder. L'application d'un
tel algorithme au codage de la parole est présentée.
It est 4 noter que la qualité du signal synthétisé de
la parole, peut 8tre nettement am8liorée si un moddle
plus détaillé est utilisé pour décrire, le modéle du
mouvement des cordes vocal plutdt qu’'um train d4'im—
pulsion. On montre aussi que la méthode envisagée peut
8tre utilisée pour estimer les paramdtres du systéme
vocales et ceux du modéle du mouvement des cordes
vocales simultanément.

SUMMARY

In this paper a method for input estimation or-decon- -
volution is presented. The basis of the method is to
use a parameterized model of the input signal. To use
the method we should thus be able to express the input
signal as a function of some unknown parameters and
time. The algorithm simultaneously estimates the para-
meters of the input signal and the parameters of the
system transfer function. The presentation here is
restricted to transfer functions of all pole type,
i.e. ARX-models. The method can be extended to handle
zeros in the transfer function. The computational
burden would however increase significantly. The algo-
rithm uses efficient numerical methods, as for instan-
ce QR-factorization through Householder transforma-
tion,.

The algorithm is in this paper applied to a problem in
speech coding. It has been observed that the quality
of synthesized speech can be improved, if a more de-
tailed model than an impulse train is used for the
pitch pulses, see Fant (1980). It is here shown how
the method presented in this paper can be used to
estimate the system parameters of the speech produc-—
tion and the parameters of the glottal pulse simulta-
neously.
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1 INTRODUCTION

To estimate the input of a dynamical system is a prob-
lem of great pradtical interest. Applications can be
found in such different areas as speech coding, see
Hedelin (1984), Geoscience, Mendel (1979) or Control
Theory, Ahlén (1984). In many situations not only the
input is unknown, but also the system 1itself might be
unknown.

In this paper a method for simultaneously estimating
both the input and the parameters of a system model is
presented. The method ig applicable to systems with
transfer functions of all-pole type. The structure of
the input should also be known. We should thus be able
to parametrize the input signal in some unknown cons-
tants, e.g. a sinugsoid with unknown frequency and
phase. To include zeros iIn the transfer function would
only require minor changes in the algorithm. The com-~
putational burden would however increase significant-
ly. The algorithm uses efficient methods like QR-fac-—
torization through Householder transformations for the
numerical calculations. The numerical algebra part of
the algorithm is modelled on the method presented in
Golub et al (1973)

The algorithm is applied to a speech coding problems,
which is described in the second part of this paper.
The problem is to estimate unknown parameters in a
model for the glottal pulses in voiced speech, see
Markel and Gray (1976).

The paper is organized in the following way. In Sec-
tion 2 the Input estimation problem in general is
discussed briefly. In Section 3 the basic steps of the
algorithm are derived. In Section 4 the application to
speech-coding is presented and in Section 5 some as-
pects on the current implementation are discussed.

2 INPUT ESTIMATION

The input estimation or decomvolution problem can
loosely be stated as follows: Construct an estimate of
the input to a system based on observations of the
output signal. The situation is depicted in Figure
2.1

u(t) y(t)
R H(z) >
input output

The input estimation problem. Estimate
the input signal u(t) based on the output
signal y(t).

Figure 2.1

In Figure 2.1 we assumed that the system is linear and
for instance defined by its tramsfer function H{z).
Formally the solution to this problem is straightfor-
ward. If

y(t) = H(q Du(t), .1
we directly get that
u(t) = B (g Hy(e). (2.2)

In (2.1) and (2.2) q—1 is the shift operator defined
by
g Lty & x(e-1). (2.3)

The estimate (2.2) suffers however from a serious
drawback. If, as most often is the case, the signal

v(t) contains noise a part of the estimate will also
be filtered nolse. The only way to improve the estima-
te (2.2) and reduce the influence of the noise is to
have some information or assumptions of the nature of
the input signal. This a priorl information can be of
various type. One can for instance assume that the
input signal is a stationary white noise sequence. A
more useful approach might be to assume that the sig-
nal we are looking for is a stochastic process with
stationary characteristics. The Input signal can then
be modelled as white noise through a linear fllter
G(q-l),“see Figure 2.2.

e(t) u(t) y(t)
—3 G(z) H(z) [—>——
:2122 input output

Figure 2.2 A model of the input with stationary
characteristics.

This kind of problem is investigated in Ahlén (1984).
If the characteristics of the unknown input u(t) is
known to be nonstationary some other kiand of approach
must be taken. We will here assume that a parametric
model of the signal is available. A simple model of
this type is

u(t) = A sin(wt+p)

with unknown parameters A, w and ¢. A bit more compli-
cated example is

t-t .
it Oy o R it
271
t-t
U(t)= y2 + (Y3‘YZ)Sin2(1'§” N 5 ) tz i t < t3 (2-4)
372
t-t
v, + (y3—y4)cos(1- 3 tg St t,
2 tA-ta

with unknown parameters tis Yi» i=1,2,3,4. This is a
model for the glottal wave suggested in Fant (1980).
This model will be used in Section 4 in connection
with the speech coding application. The input signal
is thus known except for some unknown parameters, for-
mally

u(t) = u(t,a) (2.5)

where « is a vector containing the unknown parame—
ters.

In many situations not only the input signal is un~
known but also the system H(q'l) itself. This will of
course further complicate the situation. In a situa-
tion where the input is assumed_to be white noise, the
coefficients of the filter H(q"l) can be found by
least-squares or LPC estimation, see Ljung and Ssder-
strdm (1984) or see Markel and Gray (1976). In the
case of stationary characteristics there is no hope of
separating the properties of the input, i.e. the
G(q—l) filter, from the system H(q ~). With a paramet-
ric model of a nonstationary signal the task is
easier. One possible approach would then be the

following.

1. First assume that the input is white noise and
estimate H(q—l) using LPC. Call this estimate
fig™h).

2. Perform an inverse filtering through H(q'l)
i.e.
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e(e) = B¢ Hy(o) (2.6)

3. Use some nonlinear optimization method to appro-
ximate €(t) with u(t,a). Formally solve

= arg min E (e (t)-u(t,a))? 2.7
a . t=0

and denote

;(c) = u(t,;)- (2.8)

Then use u(t,x) as_the input to improve the estimate
of the filter H(q ). Make a new inverse filtering to
obtain a new estimate of the 'input. Repeat the proce-
dure until no further improvement can be observed.
Conceptually the method alterngies between optimizing
over the parameters of the H(q ) filter and the a-pa-
rameters of the input. This method has been applied to
the speech coding problem in Hedelin (1984). We will
in the sequel show how the approximation over the ©
and o parameters instead can be carried out simulta-
neously. We will here only consider H(q_l) filters
that are of all-pole type, i.e.

H(q_l) = ——l:I‘ (2.9a)
A )
AGQY) = 14ayqlee L ba g0 (2.9b)

The input-output relationship corresponding to (2.9)
is thus

y(t) + a;y(t-13+...4a_y(t-n) = u(t) + e(t) (2.10)

In (2.10) we have introduced a noise term e(t) to
account for measurement noise, model uncertainties
etc. In (2.9b) we will thus consider the ag, i=1l...n
parameters as unknown. Denote a vector containing
these parameters with ©. Denote further a specific
estimate of the O_vector with O. To stress the depen-—
dence of the H(q ~) filter on the a; parameters we
write

-1 -1
H(q *) = H(q ",9) (2.11)
An estimate of the transfer function would accordingly
be written as )
H(q °) = H(q ,0). (2.12)
Introdufe further a as an estimate of the a-vector and
define y(t) as
y(t,0,a) = H(q™ ,0)u(t,a). (2.13)
The input estimation problem is thus in this framework
equivalent to estimating the © and o vectors. If we
use a quadratic goodness measure we can formally state
the problem as

min {tz1 (v¢e,0,00-y()) 2}

2.14
0, ¢ )

The minimization in (2.14) consists of two parts

a: Minimization over the ©-parameter which is a
linear problem.

b Minimization over the a-parameter which in gene-
ral is a nonlinear problem.

We will in the next section see how we can use the
linearity in the © part to obtain an algorithm.

3 FORMULATION OF THE ALGORITHM

In the previous section we saw how the input estima-
tion problem could be stated as a minimization prob-

lem. We will now show how an efficient algorithm for
solving this problem can be designed. It will prove to
be convenient to rewrite the minimization problem
(2.14) using matrix notation. Introduce therefore the
regression vector ¢(t) defined by

-y(t-1)
-y(t-2) y
o(t) 4 . (3.1)
-y(t-n) -
Also recall the notation
4
B = : (3.2a)
a4, .

The input-output relation (2.10) can then be written
as

y(t) = 0To(t)+ u(t) + e(t). (3.2b)
Introduce further the vectors
y(1) u(l,a)
Wi - , U@ & - (3.3)
14$.)) u{N,x) .
The minimization criterion
y(0,0) = 2 tzl (y(£)-y(t,0,)) (3.4)
can then be written as
Vy(0,a) =% 1Yy 8 Uy (e )1 2 (3.5)

In (3.5) the norm is the standard Euclidian norm in
RY. The matrix @N is defined as

oT(1)
oy 41 i (3.6)
oT(N) .
The plan of attack for solving the minimization prob-
lem

1 2
min Vy(0,a)=min = 1Y¥~8 . 0-Uy(a)l 3.7
0,a N( »®) 0,2 2 N ﬁe N( ) ( )

is to take advantage of the linearity in the ©-parame-
ters. It is well known that the problem

(3.8)

can be given a closed form solution. A vector © with
the property

0 = arg mén VN(O,a)

min Vy(d,a) = mén-]; 10 P ~Upg(a ) 2

3.9

is such that ¢¥G is the projection of Yy-U {(a) on the
column space O @N. 1f one further among the vectors
with the above property selects the one with the shor-
test length it can per definition be written as

o= o (y-Uy(@) - - (3.10)

3t 15 the (Moore~Penrose) pseudo-inverse of Py, see
agy textbook on least squares problems, for instance
Dahlqvist and Bjsrk (1974). There are many ways of
calculating @; available. If the matrix‘QN has full
column rank i.e. rank @y=n the pseudo inverse can for
instance be calculated as

ok = [ogey) tog- (3.11)
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We can thus for each given o vector obtain a 0=0(a)
defined through

9(a)=arg min %—HYN— ByO-Up ()1 2877 (a) (3.12)
where
(@) = ¥y ~ Ugla). (3.13)

We can thus in (3.7) replace © with 0(c¢) and just
minimize over the a parameters. The dimension of the ©
vector is typically larger than the dimension of the a
vector and we will thus considerably reduce the dimen-
sionality of the problem. In a speech- coding applica-
tion the dimension of the © vector is typically 8 or
10, see Markel and Gray (1976). By inserting (3.12)
into (3.7) we get

vloca),a)= %.H§N(a)—@N3§§N(a)n2= %-H(Iﬂiﬁigj?N(a)ﬁz.
(3.14)

The matrix

I- @N@g

is the projection on the orthogonal complement to the
column space of @N and will in the sequel be denoted
by & .

The problen

mén vy(0a),a) (3.15)
is a non-linear minimization problem and must be sol-
ved with some iterative technique like for instance
quasi-Newton. What we have gained compared with the
approach suggested in the previous section is that we
do not have to solve for the O parameters more then
once. Another advantage is that the minimization prob-
lem (3.15) can be solved using efficient and well
understood numerical algebra methods.

To implement for instance a quasi~Newton search proce-
dure we must besides the criterion function itself
also calculate its gradient with respect to a. We must
thus be able to calculate the derivatives

BV, ~
N __0 - (g =
g;;(@(a),a) = 5;1{@ YN(a)) (@NYN(G)J =
= ~(ogtye)) ey 2 ug(a).
dax 5

(3.16)

To calculate both the criterion and its gradient is
thus straightforward once we have a way of calculating
@N. An efficient way of doing this is to use some

factorization method, e.g. QR factorization. It is
well-known that an mXn matrix & with rank n can be gi-

ven a s0 called QR factorization

@ = QR (3.17)
In (3.17) Q is aun orthogonal matrix i.e.
Qfq = 1 (3.18)
and
Ry
R = (3.19)
0
where R; is an uXn upper triangular, nonsingular ma-

trix, see for instance Strang (1980). To calculate &~
is then straightforward since

o7 =1 - =1 -a[aTe] e = 1 - qr[rTqTqr] " IRTQT

Q ° ) Qr. (3.20)
0 1

I

Let us further decompose QTYN(a) into
hl(a)
hy(a)

(3.21)

where hl(a) is nx1l and h2(a) (m-n)X1 matrices. We then
have

VN(g(a),a) = (@) (@) =
0 0

- (oT% T

= (QRy(@)) (O L

We also get

> QMy(a) = hl(@)hy(a) (3.22)

0
T 2
L _y =
I>(2 N(a)

~ 0
d Ty T
v V(@@ ,a) = (Q¥y(=)) (0 v

*1 1
=¥T(gy 8-y (3.23)
(@) bai N(a)
where ¥(a) is defined as
0
Y(a) = Q (3.24)
hz(a) .

To calculate the criterion and its gradient is thus
quite straightforward. The only nontrivial step is the
QR-factorization.

Form @

[

‘Factorize @ into
$ = QR

l

Call to quasi-
Newton routine

]

Criterion and gradient

evaluation
Y(a)=U-Y(a)
Accept a-value _AT _h
as min-value £=Q ¥ (a) h1
0
v=0(, )
l 2
Calculat \ =HTh
a S? ate Lo
0=R, H, (o)
LI 5 VN=—wT o)
3a1 aul
Figure 3.1 A flowchart showing the basic steps of a

quasi- Newton search procedure.

There are many methods and software packages available
for this task. In the applications described in the
next section we have used Householder transformations
and the FORTRAN subroutine package LINPACK, Dongarra
et al (1982). In Figure 3.1 a flowchart of the basic
steps of an implementation of a Quasi-Newton search
procedure is given. We note from Figure 3.1 that the
QR factorization only has to be performed once. Note
also that the estimate of the O parameters is only
formed explicitly after the minimization with respect
to the a parameters is completed.
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4 APPLICATION TO SPEECH CODING

In this section we will apply the optimization method
presented in the previous section to a speech coding
problem. The standard way to do speech coding is the
so called Linear Predictive Coding (LPC), see e.g.
Markel and Gray (1976). In LPC we use a linear produc-
tion model for the pre-emphasized speech signal y(t),

- i.e.

A(q)y(t) = e(t).
We define the filter A(q) as

A =1+ I —k

= aq >

d k=1 &

where q_1 i{s the backward shift operator. The order n
typically takes the value 8 or 10. In case of voiced
speech we assume e(t) to be periodic impulses of zero
length. However, this is of course an approximation of
the real glottal pulse. A more exact model looks like
the parametrization (2.4) depicted in Figure (4.1).
See Fant (1980).

NN

f/ (Z {3 fé

Figure 4.1 The glottal pulse.

It has been observed that an improvement in the syn-
thesised speech is gained by using this more exact
model, see Hedelin (1984). To utilize this parametri-
zation we reformulate the LPC-model as

A(q)y(t)=u(t,a)+e(t)

where e(t) now is white noise. Our problem is then to
estimate both A(q) and u(t,x) using the sampled speech
data y(t). One solution to the problem, discussed in
Section 3, was suggested by Hedelin (1984). If we
instead apply the algorithm described in Section 3, we
get an efficient method to simultaneously estimate
A(q) and «a.

5 TEST RESULTS

The glottal LPC-vocoder described in Section 4 has
been implemented and tested on recorded speech data.
Below we present a typical example. The data origi-
nates from a recording of the vowel "i", like the omne
in the English word beach.

% Bo
-879.5 . 8.8

Figure 5.la Sampled data.
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Figure 5.1b Spectrum of data and initial formants.
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Figure 5.lc Initial residuals and glottal para-
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Figure 5.1@ Optimized residuals and glottal para-
meters.
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Figure 5.le Spectrum of data and optimal formants.

We now use a decibel measure of the improvement com-
pared to pure LPC. Define

Improvement = 10 1og(VLPC/VOPT),

where V. and VOPT are the accumulated loss functions
of LPC and our method respectively. In Table 5.1 we
present a sample of results from another recording of
a whole sentence. Together with the improvement mea-
sure we also present the CPU-time used on a DEC-2060
computer to calculate the optimal estimate.

Frame no Improvement (d&B} CPU-time ({ms)
1 0.45 2560
4 0 1840 i
9 o} 1692 v
12 4.00 5429

13 4.07 5719

17 4.49 4062

19 4.29 10562

20 1.97 6857

23 7.16 5450

25 1.93 5799

Table 5.1.

As we can see the algorithm gives a considerable im—
provement compared to the standard LPC algorithm. It
can be observed that for a few formants the improve-
ment is negligible. The explanation to this is that
these frames do not correspond to global waves with
the structure assumed by our parametrization, hence
our method has nothing to offer. This leads to the
question of how to handle frames that do not meet the
model assumptions. This question is however beyond the
scope of this paper.

Another interesting problem leading to the same ques-—
tion is the possible existence of local minima. We
have tried to examine this, by plotting the goodness
measure VN(O,a) given by (3.4) as a fuaction of the
glottal parameters . In Figure 5.2 we present oune of
these plots, where Vy is plotted against the closing
time t, of the vocal folds aund the corresponding amp—
litude y, .
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g

E

Figure 5.2a 3-D plot of loss function VN.
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Figure 5.2b Level curves of VN.

As we can see there seems to be a local minimum in the
upper right hand corner of Figure 5.2b. To test that
it is not a saddle point, the optimization was started
in points in the vicinity of this suspected local
minimum. We then actually found starting points which
converged to this point, confirming our suspicions.

Also notice in Figure 5.2 that the loss function VN is
far more sensitive to changes in the time parameter
ths than to changes in the amplitude y,. For more
details of test results and implementation aspects see
Isaksson and Millnert (1984).

6. CONCLUSTIONS

We have in this paper shown how the input signal and
system parameters can be estimated simultaneously. The
major advantage of the algorithm is that it handles
the involved computations in an efficient way. The
application in this paper was a problem from speech
coding to estimate the parameters of a glottal pulse
together with the vocal tract parameters. The algo-
rithm as such is however not limited to this class of
problems. The approach might for instance be suitable
for the Geosclence problem described in Mendel
(1978).

As mentioned earlier, some problems were connected
with the speech coding application. We mentioned the
problem of how to handle frames with no pronounced
glottils signal and the question of local minima. It
should be stressed that those problems are not related
to the estimation algorithm as such. For this type of
questions one should instead focus on the parametriza-
tion of the glottal pulse.
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