DIXIEME COLLOQUE SUR LE TRAITEMENT DU

‘SIGNAL ET SES APPLICATIONS

NICE du 20 au 24 MAI 1985

KL TRANSFORM OF SEGMENTED SPEECH

IFOR ENHANCEMENT AND RECOGNITION

V. R. ALGAZI, M. J. READY and K. L. BROWN

Department of Electrical an

d Computer Engineering Signal and Image Processing Laboratory University of California, Davis Davis, CA 95616

[P

RESUME

RESUME

La communication vocale avec lordinateur constitue un
important développement pour accélérer 'introduction de la tech-
nologie électronique dans le monde du travail. L’ usage intensif de
cette technologie nécessite des techniques de traitement de la voix
qui aient de bonnes performances en présence de bruit. Beaucoup
de techniques de traitement de la voix ont de bonnes performances
en environnements calmes, mais ces performances se dégradent en
présence de bruit. Ce projet de recherche examine l'utilisation d’
Algorithmes des Transformées pour traiter la parole en présence
de bruit, en mettant 3 profit les caractéristiques des signaux
vocaux.

ABSTRACT

Interaction with computers by voice is an important develop-
ment in accelerating the incorporation of electronic high technol-
ogy into the workplace. Extended usage of this technology
requires speech processing techniques that perform well in the
presence of noise. While many speech processing techniques per-
form well in quiet environments, their performance degrades in the
presence of noise. This research project investigates the use of
Transform Algorithms for the processing of noisy speech that
takes advantage of linguistic knowledge available from the signal.

I. Introduction

Speech signals, although generally considered to be non sta-
tionary, have a relatively well defined structure, related to linguis-
tic events, that can be exploited in the development of speech pro-
cessing tasks. Commonly, speech processing systems do not enlist
knowledge of the signal characteristics in extracting information
about the speech signal and, consequently, represent ”ignorance
models” of the significant aspects of the incoming signal. On the
other hand, linguistically based systems include explicit knowledge
of speech signal characteristics derived from experiments in acous-
tic phonetics, psychoacoustics and spectrogram reading, and, con-
sequently, represent “knowledge based models.” We propose a
more natural framework for speech processing, contrasting sharply
with current approaches, that exploits linguistic knowledge embo-
died in the signal characteristics.

1I. Speech Signal Characteristics

It is generally accepted that different speech sounds are
characterized by different acoustic patterns, Fricatives, for exam-
ple, are characterized by their noise-like time structure and are
highpass in nature; while vowels are quasi periodic and have a
distinctly different formant structure. The corresponding spectral
pattern, which exhibit stationary behavior for the duration of each
basic speech sound, serve as phonetic event indicators. Spectro-
gram readers, such as Victor Zue, demonstrate that the acoustic
patterns visible from broadband spectrograms encode sufficient
information to identify phonetic events. In fact, Ronald Cole
asserts that. spectral information is sufficient for identification of
phonetic segments with a first choice accuracy of 85%[1]. Con-
currently, speech synthesized from LPC models substantiate
broadband representations.

SUMMARY

We exploit this linguistic knowledge by segmenting the
speech signal into linguistically contrasting parts and, in turn,
transforming the segments into the spectral domain. This leads to
a signal processing model that considers the speech to be com-
posed of piecewise stationary segments.

This approach has several beneficial implications. First, it
provides a natural, linguistic segmentation of the speech based on
signal characteristics. Typically, other systems arbitrarily parti-
tion the speech into uniform analysis frames (typically 10msec),
reflecting the non stationary assumption, not synchronized to the
speech characteristics. Secondly, the segments can be processed as
single, stationary events exploiting correlations within the seg-
ment. In other systems, the analysis frames are processed
independently and ignore interframe .correlations. Thirdly, pro-
cessing the whole segment jointly results in a more robust extrac-
tion of the speech characteristics in noise because the duration of
the segments are generally longer than the short analysis frame
used by other systems(2].

For specific speech processing applications, the new approach
offers important advantages. In recognition systems it reduces the
possible reference templates to utterances having the same seg-
mental decomposition; excludes irrelevant data that may cause
confusion between similar, though distinctly different sounds, e.g.
B vs. D.

Within the context of speech enhancement and compression,
the new approach provides a more stable estimate of speech signal
characteristics (especially important in noisy environments); allows
for a fixed processing strategy for the entire segment rather than a
new strategy for each time frame independently; avoids joint pro-
cessing of adjacent portions of the signal with radically different
characteristics (such as voiced to unvoiced regions) that can occur
when using an analysis frame not synchronized to the signal
characteristies.

IOI. Karhunen Loeve Transform (KLT)

Conventionally, the KLT has been used as a tool for dimen-
sionality reduction and data compression. It achieves dimensional-
ity reduction by capturing patterns of correlations among
observed variables. Because it uncovers patterns of intercorrela-
tions, it can be used as a mathematical technique to analyze rela-
tionships and interdependencies in a set of quantitative variables
and to reveal underlying structural patterns. The KLT reduces 2
large set of correlated variables to a set of ranked uncorrelated
latent variables, indicating the relative dominance of each of the
latent patterns within the data. We apply the KLT to the speech
spectral data decomposed into adjacent bands to characterize each
segment independent of its duration. It is also well known that
the KLT provides optimum mean squared filtering of each seg-
ment in the presence of white noise. This leads to processing tech-
niques robust in noise.

Exploitation of this characterization depends on the end
application. We give two examples below.
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IV. Applications _

We demonstrate the new approach via two important speech
processing tasks: speaker dependent, isolated word recognition and
enhancement of speech degraded by additive white noise. In these
examples, we have manually segmented the speech into voiced,
unvoiced and silence regions via graphical display ignoring any
nonstationarities within the regions.

A. Recognition [see 3.]

Table 1 summarizes the spectral patterns in 16 adjacent
bands captured by different KL components (indicated by #) for
two repetitions of each of the fricatives and stop consonants. The
table, for example, indicates that component 1 for each of the
repetitions of the unvoiced fricative /s/ (S1 and 82) is a high fre-
quency average; likewise, it indicates that component 2 for S1 and
S2 is a comparison of high frequency bands.
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Table 1. Patterns extracted by indicated components for 2 repeti-
tions of the frocatives and stop consonants where l=freq bands 1-
4, m=freq. bands 5-8, m+=freq. bands 9-12, h==freq. bands 13-
16; UV=unvoiced and V=Voiced. o

The KL method, thus, represents a hierarchical pattern
extraction scheme. The first component, accounting for the larg-
est proportion of the variance, captures the generalized pattern of
interdependency among all the bands (e.g. concentration of high-
frequency energy). The second component, explaining a smaller
proportion of the variance, begins to uncover more subtle patterns
of interdependencies (e.g. the interdependent structure of those
high frequency bands specified by component 1). Higher order
components, in turn, will uncover even more subtle patterns of

interrelationships.

In some instances, the first component by itself hestablis}}es a
differentiating pattern, one which distinguishes its phoneme from
all other phonemes. For example, /s/, /sh/, /zh/, and /k/ can all
be identified by their first component. In contrast, the /§/, /p/s
/b/ group of phonemes requires nine to ten components to
uncover their differentiating characteristics.

Because the KL-transform captures spectral relations}lips and
interdependencies, actual frame number does n?t greatly mﬁuenc.e
it, and, consequently, no complicated time alignment scheme is
necessary. For example, the first two KL compfments f01: two
repetitions of the phoneme /s/, one with half the time fiuratlon of
the other, are illustrated in table 2. Since patterns of interdepen-
dencies do not change substantially with duration, the component
coefficients likewise, show little change.
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Table 4: IHlustration of the inherent time alignment performed by the KL Transform on
the phoneme /s/. .

Table 2. First two spectral patterns for /s/ for different durations.

Table 1 illustrates that different repetitions of the same
phoneme are characterized, as expected, by similar spectral pat-
terns. A simple template matching of component coeflicients,
therefore, serves as a classification strategy. A flow diagram of the
algorithm is given in figure 1. The internal pattern extraction
stage, implemented for each segment, consists of the following: (1)
calculation of a covariance matrix from the spectral data; (2) cal-

culation of the set of eigenvectors and eigenvalues for the covari-
ance matrix determined in {1).

After each segment acquires a set of eigenvectors and eigen-
values, the algorithm pursues divergent paths. In training mode,
the eigenvectors and eigenvalues, along with the segmental decom-
position, are simply stored in reference memory; in recognition
mode, each segment enters a classification stage, which consists of
two steps: (1) Comparison of the segmental decomposition of the
input word with corresponding sequences of the template words.
If a match occurs with only one template, classification is con-
sidered complete at this step; otherwise, a reduced reference
library, consisting only of those templates that achieved a match,
is formed for use in step (2). (2) Template matching stage in
which distances between the unknown input and the allowed
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Figure 1. Flow diagram of gpeech recognition algorithm.

reference components are computed, distances between com-
ponents (i.e. between coefficient loadings) being calculated with
the Euclidean distance metric. The template matching stage is a
threshold-controlled process, which compares components one by
one. When a sufficient criterion is met, the distance calculation is
halted and the segment is classified. Threshold 1(T1), for exam-
ple, performs an inter-distance comparison. Thus, if the segment’s
distance from one of the templates is substantially smaller than
from the others, comparison of components stops. If, however, the
distances are clustered around some common value, the Euclidean
distance between the next higher order component and its
corresponding component in each of the allowed templates is com-
puted. This distance is summed with any previous component
distances and subjected to the T1 test again. Threshold 2 (T2)
assures that each component contains valid speech information.
Thus, if a component’s variance (indicated by its corresponding
eigenvalue) approaches that of the background noise variance {cal-
culated during nonspeech activity), T2 halts further comparison of
components. Finally, a comparison involving all sixteen com-
ponents represents a forced completion condition.

Segmental distances are then cumulated to classify each
word. Note that the algorithm will give equal importance to all
eigenvectors, as long as the eigenvalue exceeds the noise variance.

The algorithm was tested using two different vocabularies:
the digits and the confusable E set. In each case, one repetition
was selected as the training set; the other repetitions were used as
the test set. The algorithm achieved a 100% recognition rate on
ten repetitions of the digit vocabulary. Although only a
superficial analysis of the E set was conducted with three repeti-
tions, the algorithm performed successfully--100% recognition--and
made use of up to 3 eigenvectors to achieve recognition.

The algorithm was also tested in a background, computer-
generated white noise. For comparison, a benchmark algorithm,
which uses a filter bank for preprocessing and the Sakoe/Chiba
DP algorithm for time alignment [4], was also implemented and
evaluated in white noise. The results are indicated in figure 2.
The new algorithm experiences only a gradual deterioration in
performance even at high noise levels because the KL transform
will perform an automatic noise removal on the statistically
uncorrelated white noise. A modified distance measure, which
weighted the KL components by their eigenvalues, was used in
these noise tests.
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Figure 2. Performance comparison between new recognition algo-
rithm and benchmark algorithm.

B. Enhancement of Noisy Speech [see 5.

Speech degraded by an additive, uncorrelated background
noise is annoying to listen to, fatigues listeners and reduces the
overall quality. The goal of speech enhancement systems is to
improve some quality aspect of the signal. We assume that only
the noisy signal is available. The concept of speech quality con-
cerns the total auditory impression of speech on a listener. It is
appraised on the basis of preference, loudness, intelligibility, recog-
nizability of properties of the original speaker’s voice and other
speaker characteristics. However, precise definitions of these attri-
butes and their correlates to the acoustical signal are not known.
Consequently, the approach taken here is to reduce the back-
ground noise with the hope that the important distinctive features
of the speech signal are preserved.

In contrast to recognition systems which require only gross
distinguishing features of the speech signal, enhancement systems
require that important detail of the signal must be tracked to
retain subtle perceptual cues. Our approach estimates the speech
in 12.8 msec time frames (characteristic of human perception)} by
shaping the spectral envelope of the DFT spectral magnitude, thus
tracking local behavior, but takes advantage of intra and inter-
frame correlations within each segment. Implicitly, the signal is
decomposed into a fine spectral structure and gross spectral
envelope. We estimate only the envelope but retain the fine struc-
ture for resynthesis of the time domain signal. By partitioning the
speech into piecewise stationary segments, classical (stationary)
estimation techniques can be applied to each segment indepen-
dently.

Figure 3 shows a high level block diagram of the system.
The spectral envelope is estimated by filtering the local noisy
speech envelope, obtained via the bank of filters (BOF) as in the
recognition system, with a fixed filter derived for each segment.
The filter characteristics are derived from intra and interframe
noisy speech spectral characteristics, measured via the KLT,
within each segment and the average noise characteristics meas-
ured during non speech activity. The optimum mean squared filter
characteristics in KL space (for white noise) are:

_ Mk )-o’(k)
alk)= 0
where M(k) are the eigenvalues of the spectral data covariance
matrix and o*(k) are the corresponding noise variances. The time
domain estimate is obtained by shaping the DFT spectral magni-
tude of the noisy speech to have the estimated spectral envelope
and inverse transforming.
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Figure 3. High level block diagram of the new speech enhancement system.

Figure 4 shows the periodogram of clean, noisy and enhanced
speech for the sentence ”Both president Reagan and Democratic
challenger ....” The signal to noise ratio is about 3db (quite loud).
Many of the speech features are obscured by the noise. The
enhanced speech recovers the major features of the speech while
substantially suppressing the noise. In informal listening tests, the
speech enhanced by the new algorithm sounds better than the
same speech enhanced by spectral subtraction [6] and Boll’s[7]
algorithm.

V. Conclusions and Future Work

The segment analysis sections of the recognition and
enhancement algorithms are identical. This suggests that the
framework established in this paper may apply to other speech
processing tasks. Currently, we are investigating new methods,

5000
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Figure 4. Spectrograms of clean, noisy and enhanced speech.

based on this work, of extracting LPC parameters from noisy
speech. Note that the segmentation of speech into stationary seg-
ments was performed graphically. A detection theory based
approach to segmentation is under development [8] and promises
to perform quite well in noisy environments.
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