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RESUME

RESUME

Nous presentons une methode de compressions de donnees
redondances
utilisant la

1'existence de
dans une

transformation discrete de Radon, nous etablissons,

exploitant angulaires

presentes image. En
entre les correlations spatiales et angulaires, une
correspondance a partir de lacquelle est engendree un
espace de projections. Ies correlations entre
projections correspondant aux correlations angulaires
de l'image sont eliminees en utilisant une technique
taux de

transmission de 1.0 a 20 bits/pixel ont ete obtenus

de quantification vectorielle. Des
avec des resultats d'une fidelite satisfaisante. Il
est possible de developper de nouvelles compressions
redondances

intra-projections aux quelles peuvent etre associees

en utilisant les inherentes

les correlations spatiales d'une image pour un angle
de projection donne.

SUMMARY

ABSTRACT

An image data compression scheme that exploits
azimuthal
presented.

(angular) redundancy within an image is
Pictorial correlation is mapped into
spatial and angular redundancy by applying the
discrete Radon transformation (DRT) to an image space
and generating a corresponding projection space. A
vector quantization (VQ) technique is applied to the
domain for removal of
which

corresponds to azimuthal correlation within the

resulting projection

inter-projection  correlation effectively

pre-transformed picture space. Bit rates within a
1.0-2.0 bits/pel range have been achieved for picture
fidelity and
Further compression is possible by

compression of
intelligibility.

acceptable

exploiting inherent intra-projection redundancy which
may be associated with spatial correlation, within the

image, at a given orientation (or projection angle).
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1. Introduction

Image data compression is associated with the
reduction of information subject to specified fidelity
Many compression
most of the

into the two

and intelligibility constraints.
schemes have been proposed; however,

methods are classified distinct
categories of spatial predictive and transform domain
techniques respectively [1]. Several image source
coders have also been developed which utilize a
combination of the features of the distinct coding
methods.

Predictive techniques are designed to exploit
spatial redundancy within image spaces by forming
estimates of image samples over a prediction window
and transmitting or storing, after appropriate
quantization, the errors of estimation; these are used
at the decoder to
faithfully.
generally amenable to relative ease of design and

Although two

reproduce the image space

One dimensional predictive techniques are
operation. dimensional
produced
compression (2], greater computational complexity is

speed of

techniques  have superior results in
inherent.

Many transform domain techniques abound [1,3] for
Typically,

transforms are applied to sub-blocks of pictures such

picture coding. two dimensional unitary

that most of the sub-image energy is confined to a

small number of transform coefficients, to allow
substantial discarding of low-energy samples and
strategic zonal coding.

Some notable hybrid coding schemes, in which

transform coding is applied along the image rows and
have been

A similar approach is

predictive
developed by Habibi [4].
adopted in the

coding along the columns,

designs of [5] where vector
quantization is used for compression along columns.

A technique is here presented in which pictorial
correlation is mapped into an equivalent form of
spatial and angular dependency. The scheme implicitly
provides an avenue for exploiting spatial dependency
over and between different orientations within a given
image space. This approach has been based on an
appropriate theory of reconstruction of image planes
from projections [6] which has found much use in

such as medical radio

It is noted that Jain and Jain [7] have

applications imaging and
astronomy.
experimented with transform.coding applied to medical
image projection data to achieve large compression in
reconstructed cross-sections.

Our  fundamental

projections, at angular intervals, on an image plane

approach is to generate

N1xN2) discrete Radon

transform and then applying a VQ procedure to

(size by employing the
camoress the resulting highly correlated projection

domain. The projection domain is of the same
dimensions as the
image plane and the substantial redundancy within the
domain arises from the low-pass filtering effect of
projecting an image.
In this paper, we focus on the removal of
inter-projection redundancy, where this redundancy
actually dominates over intra-projection correlation
for typical imagery. We therefore effectively take
advantage of angular correlation within the image
space by inter-projection coding. In applications
that involve acquiring large amounts of data in
projection space (e.g. medical imagery) before further
(PDC)

processing, a projection domain compression

approach is immediately relevant.

2.  The Radon Transform
The formal definition of the Radon transform applied
to a continuous spatially limited plane, £(x,y)

(Fig. 1), may be expressed thus [6]

Plg,t)= R[ £ j = _/ﬁ(x,y) .8(x.cos 8 + y.sinf - %) dx .dy
D

(1)
where the parameters © and t indicate the orientations
and positions of lines of integration. The line
integration is forced by an impulsive ‘'aperture'

function - the dirac delta kernel 6(.)

x

6,1
PN

t=xcos B+ysin©

f(x,y)

Y

X

Fig.1 Projecting a space, f(x,y) to generate
the projection p{©,t) at angle 8

For discrete purposes, we are concerned with
generating an NxN projection space given an image

space of the same dimensions. We therefore overlay
our spatially-discrete picture space, f(u,v), with a
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circular plane, fC(i,j) , with diameter equivalent to
the diagonal length (LD) of the space, f(u,v}, as
illustrated in Fig. 2
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Fig.2a Geometry for implementing the DR.T.
on an NxN image space, f(-),{N=8 in Fig)

Fig. 2b Selection of points of integration along
the I line and k™ orientation. 6«

The two planes, f{(u,v) and fc (i,Jj) are geometrically
The
circular plane is a discretized space with a fixed
gampling interval, At =ALD/N, between 1lines of
Points of integration are located along

centred at the origin of a cartesian p—g space.

integration.
the lines by sampling in p-g space at intervals,

AP = Lp/N,Aql = Lq/N whe:ceth(Lp2 + Lq2)l~i is ec’qual
to the the length 1.'1 of the 17 .line of integration.
To obtain projections at different orientations,
fc(i,j) is rotated by constant angular displacements
(with respect to the p-q space),A@ = K/N. Hence the
discrete Radon transform has been modelled by

N-1
P(k,1) = 3, £, (ifp, 3a;).8(i8p, cos kOO
i, . . -
+ jAq, sin kA0 - 148%)
(2)

where

and
£, (1,3) = 1 [ £lu,v) ] for 0 < u,v < M-
=V, 0> u,v > N1
The samples of the spatially discrete function,
fc (i,j) , are obtained by interpolating from and

extending the actual picture space, f(u,v), where I[.]
The

rectangular picture space is extended to the circular

is the appropriate interpolation function .

space by setting fc (i,3) to the spatial mean, uf,of the
image for 0 > u,v > N-1, where

1 N-1
5 X flu,wv)
u,v

//f=N

(3)

The uniform extension of f(u,v) with its spatial
mean, ensures that statistical variations of the image
space are transformed into similar variations in the
projection domain. The simple bilinear interpolating
function [6] has been used for the function I[.]

We shall briefly describe the inverse Radon

transform (IRT). The IRT may be defined as

. -1
£(x,y) OfF [1lei x P [ & (flg ] as (4)

where F
(1D)
essentially a filtering operation on the Fourier
transformed projection (P(0,t) = R(f)@) at a given
The filter function is the
continuous spatial frequency variable of the Fourier

is the continuous inverse Fourier transform

operator. The argqument of the operator is

orientation, o. |w]
transform. The integration over all distinct angles
I, is typically called a back~
projection operation, which effectively associates all

of projection 0 £ 9 <

filtered projections with a point (x,y) in the
original image plane. A discretized version of (4)

may be expressed as

N-1
£(i,3) = > F-:\] {I.[ A1) x S(k,1) ]} (5)
k=0
for L=0,1,....,N-1
where S(k,L) is the 1D N-point discrete Fourier

transform of the kth projection (i.e. S(k,L) =
FN[P (k,L)]). A(L) is a discrete filter function whose
impulse response may be obtained by computing the
central N Fourier series coefficients of a periodic
and windowed version of the function |w| (of equation

4.
limit aliasing in the sampled projection data.

The window is required for bandlimiting to
Il .,
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is a bilinear interpolating function that produces an
interpolated form of filtered projections before
this

method is generally known as the convolution back-

back-projection. In reconstruction theory [7],
projection technique (CBPRT) where the convolution is
effected between the filter function A(.) and the
Radon transform on the kth orientation. Depending on
the type of window employed to model A(.), different
CBPRTs may be realised [8].

3. Theoretical basis for projection domain
compression (PCC)

(1)

the Radon transform may be described by

The projection theorem: An important feature of

N-1
12: f{mAx,ndy) .

N-1
3. P(kA6,148t). w(lat) =
1=0 . m,n

w(mAx.cos kA@ + nAy.sin kA8)
6)

which is basically a discrete version of the
generalized projection theorem [7]; this infers that a
specified, operation, w(.), on the kth projection

P(k,.), is equivalent to a related operation in the
image space, fim,n). Hence this theorem suggests that
there is a substantial potential for implementing
efficient compression schemes on pictorial data via
the projection space.

(ii) Information preservation: Information
preservation characteristic of the

transformation of data. Andrews [9] has investigated

is a wvital
information entropy transformations in the case of
frequency transforms and has shown that entropy is
from a two dimensional
Although
an entropy measure of information does not take into

preserved on transformation

continuous and/or complex amplitude space.

account the fidelity and intelligibility constraints
of image compression, it does provide a means of
theoretically predicting the performance of source
codecs.

the lower bound of compression potential with an

Theoretically, the entropy measure represents

arbitrarily small distortion [10]; therefore entropy
presexrvation indicates that it is possible to develop
source codecs for bandwidth reduction or storage
minimization in the spatial (image) domain that would
perform as efficiently in a corresponding transform
domain, We have also shown [11], in a similar manner
to [10] that information is conserved on transforming
an image to the projection space.
extent, the
projection domain coding scheme.

Hence, to a large

entropy considerations justify a

4. TImplementation of coding scheme using VQ

Vector quantization is fundamentally a scheme for
of
continuous or discrete~amplitude samples into a set
(or codebook) of predetemmined vectors. VQ theory is
well in the [121. The
dimensions of the codebook (M,K) specify the VQ where
M is the number of vectors within the codebook and K
is the vector size. A rate R = Iog2 M bits/vector or

mapping a sequence of groups (or vectors)

documented literature

r = R/K bits/sample may be specified. According to
rate distortion theory [13] and Shannon's noiseless
(101,

vectors is a natural way of achieving lower bounds of

coding theorem encoding information using
compression, when the vector size becomes large.

For our simulations, we have designed the VQ
using the iterative generalized Lloyd Algorithm,
developed by Linde et al [14]. A 128x128 image (fig.
3), quantized to 8 bit/pel is the source for the
A DRT is applied to
the source picture to generate a projection space of

projection domain compression.
the same dimensions. This projection domain has been
encoded using codebook sizes of (256,4), (256,8) and
(512,8) respectively, corresponding to rates of 2.0,
1.0 ‘and 1.125 bits/pel (figs.
The has  been

inter-projection  correlation

4,5,6) respectively.

encoding designed to exploit

corresponding to

azimuthal redundancy.

Fig.3: Original Picture (128 x 128 pel)
reconstructed from uncompressed
projection space.

Fig. 4: PDC output using VQ codec
at 2.0 bits/pel
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Fig. 5: PDC output at 1.0 bit/pel
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Fig. 6: PDC output at 1.125 bits¥pel

For the lower bit rates, circular distortion is
visible which is indicative of azimuthal compression.
In fig. 4, some inherent smoothness persists in the
picture; this may therefore suggest using the output
of PDC (applied for inter-projection compression) as
input into a conventional transform coder to achieve
further compression. Alternatively, intra-projection
redundancy may also be reduced in a more elaborate PDC
scheme. As detailed designs [5] have shown, the VQ
results may be substantially improved, for a given
bit-rate, by using longer vectors in the encoding
process. The PDC performance may also be improved
with more sophisticated interpolation, however, an
economic trade—off between complexity and compression
justify upgrading the

quality is necessary to

interpolation technique.

5. Conclusion

A viable projection domain compression scheme, for
pictorial data, is proposed. The emphasis has been on
employing vector
with a view to reducing equivalent

inter-projection compression,
quantization,
angular redundancy in the image domain. Simulation
results have shown attractive compression potential.
this image
We believe

By exploiting existing intra-projection,
coding technique may be improved further.

PbC schemes are immediately relevant to medical

imaging and other applications that involve acquiring

large amounts of data in projection space before

further processing.
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