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RESUME SUMMARY

The model of visual information processing, in a com-
bined frequency-position space, is investigated through
image decomposition into a finite set of Gabor elementary
functions. A set of the corresponding expansion
coefficients represents according to the model an image.
The Gabor scheme is extended to two spatial dimensions
and generalized to account for the inhomogeneity, over-
sampling, frequency octave relations and phase quantiza-
tion. Comparison of reconstructed images with the origi-
nal highlights the advantages of the generalized Gabor
scheme . This work suggests that the generalized Gabor
scheme, modeled after cortical signal processing, is

attractive for image processing.



810
Image representation in vision
using a generalized Gabor scheme
L Introduction II. The Two-dimensional Gabor scheme

The advancement of a model for image processing in
vision based on the Gabor scheme is motivated by both
biological and computational considerations [1]-[6].
Gabor functions were first introduced as a discrete set of
one-dimensional elementary functions by means of which
signals can be represented [7]. Their main advantage is
in achieving the lowest bound of the joint entropy defined
as the product of effective spatial extent and bandwidth.
Hénce, representation of a signal by these functions pro-
vides the best spectral information for every point along
the signal variation. In cases where global analysis of the
entire signal is not practical as in speech or vision, there
is an advantage in using this representation over global
(e.g Fourier) transforms which describe the spectrum of

the entire signal as a whole.

Although Gabor functions were proposed as early as
1948, no analytic solution suitable for determination of
the expansion coefficients was available until recently
(though Gabor himself proposed in his original paper an
approximate solution). An analytic method for the one-
dimensional case, was presented first by Bastiaans [8] in
1980, paving the way for further research. Interestingly
enough, at about the same time several investigators have
proposed the Gabor functions as models for cortical cells’
receptive field profiles [1]-[3],[8], however none of these
attempted to elaborate a complete scheme as a computa-

tional model which can be further tested [9].

The purpose of this study is to develop a general
scheme of image representation in a combined position-
frequency space accounting for the biological position-
dependent sampling rate, oversampling, octave relations
between central frequencies and phase quantization; All of
these in order to better understand the organizational
principles of the visual system, and apply this knowledge

in image processing and computer vision. -

The Gabor scheme was originally suggested for pro-
cessing and communication of one-dimensional signals
[7]. Considerations of the two-dimensional case were res-
tricted to the optimal properties of a single elementary
function, but a complete two-dimensional scheme was not,
to the best of our knowledge, presented. Such a generali-
zation is obviously needed for image processing and may
also be useful for other applications.

Cur generalization is first presented in Cartesian and
then in polar coordinate system; the latter is more

appropriate for modeling of the visual system.

In the case of a (spatial) 2D scheme the coefficients’
space is four-dimensional: z,y for positions and f.f, for
frequencies (r,%,f,,fs in a polar coordinate system). It
can be shown [10] that the 2D presentation of a signal

&(x,y) can be expressed by:
d(zy) = :

( y) %Eﬂ%%%‘,n’,mﬂnﬂ fmznzm.yny (1)
{Unless otherwise stated, all integrations and summations
in this paper extend from — to +«), where the two
dimensional elementary function is:

A
fmznzm.yny = g(x —-m, D,y —My, Dy) (2)

-exp(ing Wyz +iny, Wyy)

with g (-) being the separable Gaussian window function:

g(z.y) = g=(2)gy(y) (3)

- L el ofe o]

normalized with respect to the two independent variable

such that

Sg=(z)2dz = [g,(y)|%dy = 1 (4)

It is not necessary that the two window functions g,(z)
and gy (y) be identical (of equal spread) or in general even
of the same type. It is however required that they both be
normalized (of unit energy), and that the conditions of
proper information cell size W [,<2m and W,D,<2m be

satisfied. Note that in case of equality {optimal cell size),
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the function set zfm,nzmvny.; becomes complete, with each

of the functions being separable into fr 5, -f,,Lyny (Fig. 1).
To calculate the coeflicient set Ea.mz,&mynyi an auxili-

ary function must be employed since the elementary

functions under consideration are not orthogonal. In the

one-dimensional case Bastiaans determined the reguired

bi-orthogonal function set, the so-called ¥{z) function [8]:

1 1/2 X 3/2 2
x
7<z>=[\@, &= -expnﬁ] (5)
© Y (=1 exp|-m(n+ 232
1.2z 2
n+—2—i-5

where K,=1.8540746 is a normalization factor (Fig. 2).
Extending Bastiaans’ work to two dimensions, we note
that due to the separability of g{z.y), and the duality of

the g{z,y) and ¥(z,y) functions, the latter is also separ-

Hzy) = 72 (z) 7 () (6)

This observation simplifies the the extension of the Gabor
scheme into a two-dimensional {(or higher dimensional)
system. An alternative solution is afforded by the Zak
transform [11]. Using the auxiliary function ¥{z,y), the

coefficients Eamz"zmu,,yg are calculated by:

amznzmynv = ff’b(x.y)ﬁ’* (.’L‘ "szz:- y"'m‘yDy) (7)

-exp(—ing W,z —iny, W,y )dzdy

To better model the visual system with its
eccentricity-dependent features and for various techno-
logical applications, we represent the Gabor scheme also

in polar coordinates (r,49), where

r = Vzr+y? z = rcosd
¥ =tan™! ;Z— Yy = rsind ()

An image ®(7,9¥) may accordingly be expressed by:

B(r.9) = LY 02 O mgny 9 {7~y D 9~ s D) (9)

"7.1,77.,. Myhy

-exp(in, W,r +ingWsd)

with the coefficients being calculated similarly to the

expression in the Cartesian coordinates:

2n Tmax
U nomgny = f f q’('f‘ cos®,7sind) (10)

$=0r=0

y*{r = D, 8—m 3 Dp)-exp(—in, Wpr —ing Wyd)drdd -

Although the image is given in Cartesian coordinates, the
processing takes place in a polar coordinate system
where position-dependent sampling can be easily incor-
porated along the 7 axis. The image is then encoded by
cells representing the coefficients of the position
{m, D, ,myD3) and spatial frequencies (1, Wy, ¥y).
Physiological data indicate though a somewhat
different representation, where cells are sensitive to a
specific frequency , say fp, and a specific orienlations &,
instead of spatial frequencies {(n,W,,n3#;). The charac-
teristics of such a two-dimensional scheme are currently

under investigation.

III. Image representation

The basic features of the Gabor scheme for image
representation were studied computationally. Examples
such as demonstrated in Figure 3 illustrate that indeed
one can decompose and reconstruct images using a finite
set of Gabor elementary functions. Furthermore, the
computations confirm and support varicus theoretical
observations. In particular it becomes apparent that
there exists a trade-off between the number of functions
utilized along the spatial coordinates (m; and m, ) and
the number of frequency components employed per posi-
tion. Thus, the dimensionality of the finite Gabor scheme
determines the quality of image representation with a
degree of freedom permitting various "paving' schemes.
Similarly, the optimality achieved by the Gabor functions
specifies the joint product uncertainty but permits the
selection of either effective spatial spread or the effective

frequency spread.
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The finite expansion coefficient set provides a com-
pact representation of an image. Graphically this can be
better demonstrated by considering image cross-cuts and
the corresponding coeflicient distribution. Examples
such as demonstrated in Figure 4 illustrate that a small
number of coeflicients can effectively represent an image.
Given a certain dimensionality of the scheme, further

compression can be achieved by thresholding the

coefficients {quantization).

IV. The generalized Gabor scheme

To model the biological {human) visual system, ‘the
Gabor scheme has been generalized to incorporate effects
of quantization, position dependent sampling rate and

oversampling [10].

It is well known that phase information is most
important in vision [12]. Using results obtained by Good-
man and Silvestri [13], it is shown elsewhere [10] that for
N quantization levels the one-dimensional signal recon-
structed from a quantized (phas.e only, leaving the magni-

tude unchanged ) set {a,,} can be expressed by:
g(x) = Zzla‘mnl'fmn'exp(iamn) = (11)
= 22 l Qypn | 'fmn '{Eﬂnc“% + H 'GXP{”L(PNH)V’mn]}
mn P

These analytical results were computationally tested for 5
and 24 quantization levels. The results, (Fig. 5) indicate a
good approximation for 24 levels, and even with 5 quanti-

zation levels the signal can be easily recognized.

Position-dependent sampling rate is incorporated
through distortions of the independent position variable
[10]. Such a scheme becomes attractive for various tech-
nological system in which a wide-field display system is
implemented. Oversampling, characteristic of the biologi-

cal visual system, improves image quality.
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Fig. 1 - A set of the real part (a), and the imaginary part (b)

(b) of seven Gabor functions, characterized by the same

spatial spread. fmn = g{z—2mD)-exp (n¥z). .

Fig. 3 - (a) Original (256x256 pixel) and (b) image recon-

structed by a finite set of Gabor elementary function.

.{b{) This example illustrate the locality of information as cap-
tured by a confined set of frequency components.
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Fig. 2 - The auxiliary function ¥{z). This function is bi-
orthogonal to the Gaussian window function g {(z).
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7 Fig. 5 - Quantization effect on image representation in a
Gabor scheme. Compared are the original (—), and
images reconstructed with phase step of 15 degrees (24
quantization levels ~---) and phase step of 72 degrees (5
quantization levels - - -).

Fig. 4 - (a) Decomposition and reconstruction of a "typi-
cal" (band limited) image cross-cut. Superimposed are
the original image (—), and the image reconstructed,
with seven Gabor functions per position (-----).

{b) Absolute value of "Gabor cells" for the above aperiodic
image cross-cut.



