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RESUME

Dans cette presentation nous etudions comments
reconstruire une image en partant exclusivement de
1”ampleur des transformations de Fourier. Nous
utilisons un nouvel algorithme appellé la methode de
projection genmerale. Cet algorithme peut detecter
deux phenomenes pafhologique: pieges et impasses qui
semblent etres les solutions veritables mais en

realité sont de fausses solutions. Des resultat sont

presente’s a”1 appui.

SUMMARY

In this paper we study the problem of restoring am
image from the magnitude of its Fourier transform.
We use a new algorithm called the methed of general-
ized projections. The algorithm can detect two
pathological phenomena: traps and tumnels which ap-
pear as false solutions. Results are presented that
illustrate correct restorations from magnitude infor-

mation only.
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1. INTRODUCTION

A fundamental idea in image restoratiom is that
the signal or image to be restored, f, is known to
lie in m given gets Ci’ i=1,2,...,m where each of the
sets represents a constraint on the image.
Associated with each set Ci is a projection operator
Pi’ i=l,...,m. In general, for all sets -- not
just convex onmes -- we call g=Pih the projection of h

onto C, if g ¢ C, and
1 1

Itg-hl] = Min {ly~hl] (0
ally € Ci
for i=1,2,...,m. llgl| denotes the norm of g.
1.1. Remarks
1) The projection as defined in Eq. (1) is a
unique point if Ci is a convex set. When Ci is nomn-
convex there may be more than ome point that
satisfies the definition of projection. However, in
practice, we camn usually find a procedure for
uniquely choosing one of these points, normally
through the demand of satisfying another condition.
This eliminates the ambiguity that would otherwise
result from non-singleton projection points. For in-
stance in the restoration from magnitude problem, in
projecting onto the set of functions with prescribed
Fourier magnitude, the phase of the estimate at the

n’th iteration uniquely defines the projection.

2) We assume that in all problems of interest
there exists at least one point in Ci that is the
projection of an arbitrary L2 signal (L2 is the space
of square integrable functioms).

A method for restoring f when all the sets
are convex is given by the method of projection onto

convex sets (POCS). The POCS algorithm [1]

£41 = Tp-- T £, £ arbitrary, (2)
where
T, 8 1= (p.-1), i=1,2,...,m (3)
i i i 3 3Ly e meyllly

m

is known to converge to a point in Cotigl Ci provided

that C0 is not empty and 0<)\i<2.0.

2. RESTORATION BY GENERALIZED PROJECTIONS

If one or more of the set ci is non-convex then
the convergence of the algorithm given by Eq. (2) is
not guaranteed. Nevertheless the algorithm for m=2,

i.e.,

£ =TT

a1 1Tpf,s  £q arbitrary (4)

have some properties that make it useful for image
restoration, Since convergence of Eq. (4) is not as-
sured we need some measure that will allow us to
gauge the performance of the algorithm durimng the
iteration process. The performance measure is needed
also as an indicator for when parameter changes are
required in the algorithm in order to improve its
performance. Such a measure is provided by the
summed~distance-error (SDE) defined as follows. For
any vector g in L,, the SDE demoted by J(g), is given

by
J(g) = Heg—gll + HPzg-gH. (5)

The SDE is the sum of distances from g to the two
sets C1 and CZ‘ In general J(g)>0 and J(g)=0 if and
only if g « Cl n CZ' When J(g) is small the signal
is "close" to satisfying all the constraints imposed
on it; when it is large the signal is far from satis-
fying the a paionl comstraints. The main property of
the recursion given by Eq. (4) is the set distance
reduction property described in the following

theorem.

2.1. Theorem
The recursion given by Eq. (4) has the property that

J(£_..) < J(Tzfn) < J(fn) (6)

n+l

for every )\1 and )\2 that satisfy
0< A <AF), i=1,2, &

Here A(fn) (not given here because of its lengthy
form) depends only on the latest estimate £ and on
the operators Pl’ PZ' The proof of this theorem is

given in Ref. [2].

2.2, Remarks
1) It can easily be shown that the range of )‘i in

Eq. (7) always includes the interval [0,1].

2) The set distance reduction property described by
Eq.(6) does not extend in general to an algorithm such
as in Eq. (2) with m > 2. [See [2] for a counter
example].

3) Despite the fact that the theorem is not wvalid

for m > 2 the algorithm given by Eq. (4) is not
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especially restrictive in practice. This is because
we can often combine those properties of the signal
which are easily expressed in the space domain to one
set Cl whose associated projection operator P1 can be
calculated without too much effort. Similarly the
properties of the signal which are easily expressed
in the transform domain can be combined into a second
set C2 and the corresponding projection operator P,
can again be calculated without too much effort.

4) The algorithm given by Eq. (4) can be optimized
with respect to Al and >‘2 on a per-step Or per-cycle
basis where the SDE, J(fn), is used as a criterion
for minimization. More about this appears later in

this paper in connection with the RFM problem.

5) The pathological behavior sometimes exhibited by
the algorithm of Eq. (4) can be explained by the ex—

istence of: (i) fixed points of the operator PR, (g

is a fixed point of PP, if g=P;P g) which are not
alid solutioms. We call these points

traps and they

<4

occur only when non-convex sets are involved; and
(ii) tunnels in which the solution is approached so
slowly that for all practical purposes the algorithm
has ceased functioning. Traps and tunnels are il-

lustrated in Fig. (1).

3. THE RESTORATION FROM MAGNITUDE PROBLEM

3.1, General

The two sets involved in the restoration from mag-
nitude (RFM) problem are: Cl the set of space-
limited functions (any two level amplitude
constraints (i.e., a £ f < b can easily be added) and
CZ the set of all functions which have a Fourier

transform magnitude equal to some real positive

prescribed function M(w). Thus
¢ = {e(x): g(x)=0 for Ixl>a} (8)
€, = {s(x)+6(w: 16(w) |=M(w) for allw}. (9)

It can easily be verified that C1 is convex and that

C2 is non-convex. The projections 2 and P, onto C1
and CZ are respectively given by
. elx), Ixl<a
P1g= 6, lxl2a (10)
and
JO(w
P2g+ﬂ-M(w)eJ¢( ) (11)

where ¢$(w) is the phase of G(w). P,g is uniquely
defined by Eq. (11) although C2 is non-convex.

The general restoration algorithm is given by Eq.
(4) with T, i=1,2 defined in Eq. (3): T.=1+), (P -
1). This algorithm has the property of set-distance
reduction, or the property that (J(fn)}:__:o is a non-
increasing sequence, for (at least) those values of

A}, that satisfy the imequality 6).

3.2. Fundamental Remark
When >\1=>\2=1, Eq. (4), with P, and P, as defined in
Eqs. (10) and (l1) reduces to the Gerchberg-Saxton
algorithm [3] and the property that {J(fn)}‘;:o is a
non-increasing sequence becomes equivalent to the
non-increasing error property described by Fienup
[4]. Also, it is readily shown that Fienup’s [4]
output-output algorithm is equivaleht to a special

form of the set-distance reduction algorithm.

3.3 Optimization of the Relaxation Parameters (RP)

ei2

It can be shown [2] that an optimum (per-cycle) al-

gorithm when Cl is a linear subspace is given by

f . ,=P.Tf (12)

a1 BT fo arbitrary.

This algorithm is generally near-optimum when C1 is
not a linear subspace. The optimal value of )\2 in
Eq. (12) can be found by a search which is relatively

fast when Cl is linear.

3.4, Traps and Tunnels in the RFM Problem

The algorithm of Eq. (12) is caught in a trap if

f =P, T,f
n 172™n
Recall that a valid solution satisfies f ¢ Cl n C2.

yet fn is not one of the valid solutions.

When the glgorithm'enters a tunnel the change from

iteration to iteration is negligible, i.e., f

Pszfn.

nitude the existence of traps cannot be easily

n
In the special case of restoration from mag-—

demonstrated theoretical}y. ‘However, the existence
of traps is supported by the real difficulties one
encounters in restoring some sighals or images from
their magnitudes. '

The following two observations are of great practi-
cal importance regarding traps and tunnels. (i) The
SDE can be used to detect traps. By this we mean
that being in a trap is equivalent to no change inmn
J(fn) from iteration to iteration. (ii) When P, is
a linear operator (as in Eq. (10)) then a correct

solution f lies in a hyperplame orthogonal to the
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vector szn—fn, i.e., fn—f is orthogonal to szn—fn.

1f P; is nmot linear this is only approximately true.

4, EXPERIMENTAL RESULTS

In this section we describe the results of restora-
tions from magnitude for two synthetic images: IMAGE
1 and IMAGE 2 given in Fig. 2 and 3 respectively.
The non-zero portion of each image is confined to a
region of 30x30 pixels in the center of a total field
of 64x64 pixels. IMAGE 1 is composed of six gray
levels with minimum level 0 and maximum level 1.
IMAGE 2 is a two level binary image of 0”s and 17s
only. For the restoration experiments we used the

four algorithms described below:

1) The Gerchberg-Saxton (GS) algorithm (fn+1=P1P2fn)

lwith Cl’ C,, P, and P

5 2 as given by Egs. (8-11);

2
2) The same algorithm as in (1) except with €y and

P,; replacing C; and P,. iy is a subset of (; that

1L
includes a two-level amplitude constraint:

ClL={g(x): g(x)=0 for [x[>a and

0 < g(x) <1 for Ixli<a}, (13)

and P, is the projection operator that projects onto

ClL

3) The relaxed projections algorithm i.e., the algo-
rithm using optimum relaxation parameters as given by

Eq. (12) with C1’ C,, P. and P

20 P as before;

2

4) The same algorithm as in (3) with ClL and P,
replacing Cl and P,.
"In the relaxed algorithms (3) and (4) a search for

the optimal value, A2m’ of 12 was made.

Figure 4 gives the restored images after 30 itera-
tions for the above four algorithms with imitial
points f0=0. Panels a and b of Fig. 4 result from
algorithms (1) and (3) respectively (i.e., without
using the two-level comstraint) and give poor but
recognizable images. The positive background imn
Figs. 4a and 4b (instead of zero) is to the negative
portions in the restored images which make it neces-
sary for the sake of display to shift the level of
the images upward. Figures 4c and 4d result from al-
gorithms (2) and (4) respectively (i.e., with the
two-level constraint) and show much better
restorations. Indeed algorithm (4) yields a result
indistinguishable from the original. Note the coor-
dinate reversal of the restored images: if f(x,y) is
the original image then f(-x,~y) is the coordinate-
same magnitude

reversed image and has the

function. This coordinates reversal can be seen in

the following figures as well. Figure 4 shows the
significant improvement when relaxation parameters
are used. The example in Fig. 4 also shows the im-—
portance of projecting onto the sets of functions
satisfying the two-level constraints for good res-
torations using a relatively small number of
iterations. Figure 5 shows the restorations of IMAGE
2 for the same four algorithms as before and for the
same initial point. In Fig. 5 the restored images
for the four algorithms are given after 100
iterations. The very poor restorations together with
the very small changes observed in J(fn) after a cer-
tain number of iteratioms is symptomatic of the
condition whereby the algorithm is either near a trap
or is approaching the correct solution through a
tunnel.

We also wanted to demonstrate the effect of the
starting point. Figure 6 shows the results of the
restoration of IMAGE 2 with an initial point f01(x,y)
defined as follows: Let Sp be the support of f(x,y)
i.e., 30x30 points in the center of the total field
of 64x64 points, fOI(x,y)=0.72 for a region of 20x20
points in the center of Sp and f01(x,y)=0.36 for the
remaining points of S . Figure 6 shows the restored
images for this case without (a) and with (b) the use
of relaxation parameters.

Here we clearly see the importance of the initial
point for rapid restoration. With f01(x,y) we get a
recognizable image with pure projections and a very
good image with the use of relaxation parameters,

after only 40 iteratioms.
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Fig. 1 TIllustration of a trap and tunnel for an al-

gorithm of the form fn+l=P1P2fn

(a) Starting at the point f the sequence {f }
converges to a trap point T while the
true solution must belong to ClnCZ.

(b) Starting at the point £ the algorithm enters
into a long tunnel towatrds the solution at
the point S.

Fig. 4 Restoration of IMAGE 1 After 30 Iterations
With Initial Point fo=0‘

(a) (Upper left). Restoration by fn+ =P P_f

117 2™n"
(b) (Lower left). Restoration by fn+1=P1T2fn'
(c) (Upper right). Restoration by fn+1=P1LP2fn'
(d) (Lower right). Restoration by fn+1=P1LT2fn'

Fig. 2 Original Image IMAGE 1.
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Fig. 5 Restoration of Image 2 After 100 Iterations
With fo=0. .

(a) (Upper left). By fn+1=P1P2fn'

(b) (Lower left). By fn+1=PlT2Fn'

(c) (Upper right). By fn+1=PlLP2fn'

(d) (Lower right). By fn+1=P1LT2fn'

Fig. 6 Restoration of IMAGE 2 After 40 Iterations
With Initial Point £ 1(x,y)=0.72 for 20x20
Pixels in the Center of the 30x30 Pixels of
the Support, S, of the Function £.
fol(x,y)=0.36 gor All Other Points of Sp.

(a) (Left). By fn+1:P1LP2fn'

(b) (Right). By £, =P T f .




