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RESUME

Ce papier decrit une nouvelle approche au
refraichissement temporel des parametres des filtres
de moindre carres en treillis. Par rapport aux al-
gorithmes d'utilisation courante, des formules ex-
plicites, recursives dans le domaine temporel, pour le

rafraichissement des coefficients de reflexion et des

gains du treillis sont developpees. Ces formules
originales ameliorent d'une facon significative les
proprietes numeriques (par example, la precision
numerique et la stabilite numerique) des algorithmes
de moindre carres pour les filtres en treillis. Des
resultats analytiques et des simulations des propri-
etes de ces algorithmes sont presentes.
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Table I. Computational organization and complexity of

the LS a-posteriori lattice-ladder structure.

SUMMARY

This paper describes a new approach to the time-
updating of the parameters of a-least squares lattice-
ladder filter. In contrast to conventional algo-
rithms, time-recursive formulas for the explicit up—
dating of the reflection coefficients and the ladder

Mhanan moce FAaneemael oo

ond o dawvalanad
10e8e New IoTmi.as

gains are developad. e d an Tas

Laliaciiadslly
improve the numerical properties, e.g., numerical
accuracy and numerical stability, of the least
squares lattice algorithms. Analytical and simula-
tions results on the numerical properties of the new
algorithms are presented.
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1. INTRODUCTION

Lattice~-ladder structures are extensively used in
various signal processing applications. After the in-
troduction of the classical two-multiplier lattice by
Ttakura and Saito, a number of adaptive lattice fil-
ters have been developed and applied in various fields

[11.

Exact least-squares (LS) algorithms for all~-zero
modeling have been extensively studied in the litera-
ture [1-3]. 1In addition, much attention has been giv-
en to the case in which suboptimum (''non-exact' LS)
gradient-type algorithms are used for the adaptation
[4-5]. Recent research has been devoted to the inves~
tigation of the numerical properites of both types of
algorithms in the case where finite precision arith-
metic is used [6-8].

As is well known, lattice structures are described
in terms of the so-called reflection coefficients and
the ladder gains. Roth parameters are recursively up-
dated in time, in the case of adaptive filtering, in
an effort to minimize the accumulated squared error.

In this paper we describe a new approach to the
time updating of the parameters of a LS lattice-ladder
filter. In contrast to the conventional algorithms, we
have developed time-recursive formulas for the explic-~
it updating of the lattice parameters, i.e., of the
reflection coefficients and the ladder gains (direct
updating). To distinguish the new structures from the
conventional ones we use the term '"modified" LS lat-
tice algorithms.

The modified structures are developed for both
a priori and a posteriori error-based LS -algorithms.
Finally, simulation results are given that support the
superiority of the modified algorithms, as compared
with the conventional ones.

2, THE CONVENTIONAL LS LATTICE-~LADDER ALGORITHMS

We consider a multichannel FIR filter of order m
with the following input-output relationship

Tt At
g (m = —J_zlcj (m) x(ntl-1) = - (mx () (1)
where
e & cfmelm ... efm)” =
x m 2 xiwxee) . )] )

The input signal x(n) consists of 2-channels whereas
the output ym(n) is a g-channel signal. As a conse-

quence, the filter coefficients {cj(n) , j=1,2,...,m}
are 2xq matrices with scalar entries.

Suppose now that z(n) is a g-channel desired re-
sponse signal. The LS filter gm(n) is obtained by

minimizing the following total squared error

n .
B (0 = ] 27 e (m e () )
j=M
where
e (i) Lz + cFm x () (5)
m -m ~m

is the estimation error at time j based on data up to
the time n. In case j=n we will simplify the notation
to £ (n). The parameter A , 0<A<L , is the well-known
exponential forgetting factor. A value of A close to
but less than one makes it possible to realize time
recursive LS filters that track slowly varying parame-
ters [1}, [9].

In this paper we will limit our discussion to the

so-called prewindowed signal case. 1In this case, we
assume that the input signal x(n)=0 for n<M. Obviously
this is an arbitrary assumption, but it has the advan-
tage of leading to simpler fast algorithms.

Minimization of E (n) in (4) leads to the follow-
ing set of normal equations

R (e (m) = -x (n) )
where oo ¢
R = ] 0% x ()x (3) o
Jj=M
¥ . n-j t
r () =] Vx93 (8
j=u

The LS filter ¢ (n) for a fixed time n can be ob-
tained by solving (6) using fast order-recursive algo-
rithms 1], [10], [11].

However, in many adaptive signal processing appli-
cations it is desirable to solve for ¢_(mn) recursively
in time. This can be attained by using any of the con-
ventional recursive LS (RLS) or square-root, or ortho-
gonalizing algorithms [9], [12], [13] with a computa-
tional complexity of O(m2) per time update.

Besides these methods more efficient "fast RLS
algorithms" are available which offer a computational
complexity of O(m) per time updating [14], [13], [12].
We note that all these algorithms are recursive in time
but the order m is fixed, say, to p.

in many cases of practical interest, as in adap-
tive equalization and echo cancellation, we do not need
the LS filter Em(“) but, instead, the error em(n) or

the estimate y (n) is desired. For such problems we
can use the so—called LS lattice-ladder algorithms [1],
[151. These methods are recursive in order and time in
the sense that all errors € {(n) , m=1,2,...,p are pro-
duced by the algorithm at each time instant.

As it is known, we can distinguish between two
families of fast LS algorithms [13]. Algorithms in the
first family primarily use the a-posteriori errors, of
the form

e (m) = z(m) + ¢ (Wx () )

In contrast, algorithms in the second family use
a~priori errors of the form

t
em(n) = z(n) + gm(n—l)gm(n) (10)
The difference between these two errors is that the
a~priori error is computed using the optimum filter pa-
rameters at the previous time instant. The a-priori
error based algorithms are best suited for applications
such as adaptive equalization and adaptive noise can-
celing. We will use the Greek letter £ for a-posterio-
ri errors and the English letter e for a-priori errors
[13].

The LS lattice-ladder algorithms can be derived by
using either a geometric approach [1], [2], [8] or a
matrix approach [3], [12], [15]. Table I summarizes
the a-posteriori LS lattice-ladder algorithm whereas
Table II gives the a-priori one.

The algorithm in Table I uses the a-posteriori
forward and backward prediction errors, defined by

(n) = x(n) + gi(n)§m(n41) 1D

€

(n) (12)

€

g3 o 3 rh

t
x(n-m) + Em(n)ﬁm(n)
where a (n) and b (n) are the LS forward and backward
predictors at time n.

The algorithm in Table II is based on ‘the a-priori
forward and backward prediction errors, given by
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@ = x(@ + 2t @Dk (@) a3)
ez(n) = x(n-m) + P;(n—l)gm(n) (14)

Furthermore, both algorithms, use the following
variables.
Forward and backward variances

of () = 2 SREHCPERI O D @1s)
LY
and
o) = 2 IR, )6 (m, ) (16)
sou
Partial correlation coefficients
8 (n) = Z P3P 1<n— 3-Det (m,5) an
4
and
B2(n) = z WL el | (,3) (18)

=M

Forward and backward reflecfion coefficients

£ -f t
K () = -0, ()8 (n) (19)
b _ --b
km(n) —am_l(n—l)ﬁm(n) (20)
Ladder gain
i _ _~b Z, -
km(n) = —Gm_l(n) bm(n) (21)
. -f, (A T -1
Note that we use the notation um (n)=[am(n)]
Angle Variable
) = 1 xS @R (wx (w) (22)
o I\ Ry In
It can also be shown that
det R_(n-1)
% . .n m
0 f_mm(p) —_A det Rm(n) ) <1 (23)

This last relation allows for the interpretation of
a:(n) as an angle variable. It is worth mentioning
that this angle variable is directly related to the
likelihood varlable Y (m) =

l/a (m) [1], [15].

1- a (n) and the optimum
o

gain m(n)
We conclude this section with some remarks re-

garding the computational complexity of the algorithms

in Tables I and II. From the tables we see that both
schemes require the inversion of the x% matrices

a (n) and o (n) which requires a computational com-

plex1ty of 0(£ ) per time update. However, these in-
versions can be av01ded by updatlng directly the in-~

verse matrices a (n) and a (n) or theeir square-root

factors using rank one decomp031t10ns. Another ap-~
proach based on the modified Gram~Schmidt algorithm is
described in [19]. All these approaches reduce the
total complex1ty of the LS lattlce—ladder algorithms

to 0(2 m) per time update.
3. THE MODIFIED LS LATTICE-LADDER ALGORITHMS

In this section we derive formulas for the direct

. cx;f (n) Ei(n) b

updating of the reflection coefficients and the ladder
gains. The derivations are mainly based on the follow-
ing matrix identity which is a-general form of the
well-known matrix inversion lemma [9], [12].

1.1 1t-1
Qatxy® 1= l At R OE oqpA (24)
12y x

We will first derive the “recursions for the modi-
fied a-posteriori LS lattice-ladder algorithm. For
convenience we will refer to relations in Tables I'ox
II by using the notation (I- ) or (II- ).

To obtain a direct updating formula for the for-

ward reflection coefficient k (n) we should combine

(n) and R (n)

time recursions for the quantltles a

(see eq. (19)). Since a time updatlng for Bm(n) is al-
ready available (see eq. (I1-6)) we should obtain an up-
date for a;f(n). To this end we first recall from
[13] that

el = 7 Dl o, (25)
1+ left(n)a (n—l)e (@) =

o (n—l)/a 1 (W (26)

1+ 1o (n)a (n—l)e (n)a (n)-a ™ /o 1 () 27

Substitution of (I-6) into (I-7) and applying (24) for
(11), after some algebraic manipulations gives the
desired formula

1(n)”k (n-1) -

[ (n—l)+€ (n)k l(n-—l) ] (28)

*
am(n~l)

For the single-channel case (28) is simplified into

*
f o (n)
Ko=) -
am(n—l)

~f £ bt *
o - ~1) /o (n-
Lo Doy e, (-1 /o, (n-1) (29
This recursion offers a direct time updating of
the forward reflection coefficient,

To obtain the corresponding formula for the back-
ward reflection coefficient we proceed in a similar
manner. Indeed, by combining (I-13) with (24) and
(I-12), we obtain
(30

Aa:’ (n) ez(n) - oa;b (n-1) e§<n) a;l (n)

Substitution of (30) and (I-6) into (I-8) leads to the
desired recursion

m+fn> 1(n”1> -

ft

- b
a ?n—l)e (n~1)
e [e_ (n)+€:1t(n—l)k§_'_l(n—l) ]

a:(n—l) (31

To complete the algorithm we need a corresponding
formula for the ladder gain km(n). This can be easily

obtained by combining (30), (I-14) and (I-15). Indeed,
it is readily shown that
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k() = k (1) -
a_b(n)eb(n)
2= [ e (n)+€ Emk (@D ] (32)
o (m)

The modified a-posteriori LS lattice-ladder al-
gorithm is obtained from Table I if we make the
following changes.

. Move (I-12) in place of (I-6) which is not

needed any more.

. Replace (I-7) by (28)

. Replace (I-8) by (31)

. Delete (I-14)

. Replace (I-15) by (32).

This algorithm was first introduced in [16].

Next, we turn our attention to the derivation of
the modified a-priori LS lattice-ladder algorithm.

(1II-6) into (1I-7),

We start by substituting eq.
which gives
(n-1) -

£ _ ~f t
km-l(n) = —>\0Lm (n) Bml

a;f () efﬂ(n) ezt (n-1) OL:(n—l) (33)
To continue, we note that
-2 a;f @ e, (1) = Aa;f (@) ¢, (a-1) a;f (-1) 65, | (n-1)
= Au (n)a (n—l)km+l(n— ) (34)
However (see (II-11), we
oci(n—l) =% {ocrfn(n) - ei(n)eit(n) a:l(n—l)}
Using this relation, (34) becomes
£, .t ot
_A%n (n/Bm+l(n—l) = km+l(n~l) -
omf(m) e melfmal i, (1) (35)

Substituting (35) into (33) and then using (II-10)
gives the following direct updating recursion for the
forward reflection coefficient

f f
km+l(n) = km+l(n— ) - a (n)e (n)e (n)u (n~1) (36)
To obtain the recursion for the backward reflec—
tion coefficient we proceed in a similar way. Indeed,
we first use (I-8) and (I-6) to derive
b _ -b
km+l(n) = - kam (n—l)8m+l(n 1)
~b b ft *
o (n—l)em(n—l)em (n)am(n—l) (37)

Then using (II-13) we successively have

- xa;b(nfl) B (01 = A’ (1) & (2K (a1

= kz+1(n-l) - a;b(n—l)ez(n—l)e (n—l)a (n- l)k

(D

Substituting the last relation into (37) and using
(1I-9) gives

b

b B -b b ft

k (n) = km+l(n—l)—am (n—l)em(n l)em

ES3
bl (m)a (n~1) (38)

By proceeding in exactly the same way we can
derive the following formulas for the direct updating
of the ladder gain

Kn(n) = k- (n-1) =~ myel(myel | () o' (m) (39)

The modified a-priori LS lattice-ladder algorithm
is obtained from Table II if we make the following
changes.

. Delete (II-6) and (II-14)

. Replace (II-7) by (36)

. Replace (II-8) by (38)

. Replace (II-15) by (39)

Obviously, before the replacement, the time shift
n > n-1 is required.

This algorithm was first introduced in [18].

4. NUMERICAL PROPERTIES AND PERFORMANCE COMPARISON

LS lattice algorithms using the new formulas given
above to directly update their reflection coefficients
have similar computational complexity as the conven-—
tional LS lattice algorithm. However, the modified LS
lattice algorithm exhibits better numerical properties
[18]. 1In this section we discuss the numerical behay—
ior of the various LS lattice algorithms mentioned in
this paper.

4.1. Comparison of the Numerical Accuracy of LS Lattice
Algorithms

The numerical accuracy of the direct updating for-
mula for the a priori errors modified LS lattice algo-
rithm has been tested through computer simulations.
Table III provides the output mean square error of the
LS lattice algorithms using both the conventional form
and the error-feedback form. Fixed point arithmetic
with a word-length from 8 to 15 bits was used in the
simulation. The improvement of the new formula is ob-
vious from these results. This result agrees with the
experiments for the gradient lattice algorithm [6]. 1In
both cases, the modified LS or the gradient lattice al-
gorithms, which provide better numerical accuracy,
adopt an approach to directly update the reflection co-
efficients without first computing the crosscorrelation
and autocorrelation of the estimdtion errors, as does
the conventional LS lattice algorithm. Since the LS
lattice algorithm using the error feedback formula per-
forms exact LS estimation, it yields a faster initial
convergence than the gradient lattice algorithm.

Because the parameters estimated in the LS lattice
algorithm are the reflection coefficients and the joint
estimation coefficients, the extra output error is
mainly caused by the inaccurate estimation of these co-
efficients. The estimation error in the coefficients
of previous stages will also propagate from stage to
stage. In this paper we only consider the estimation
error introduced in each stage. Below, we provide a
simple analysis of the estimation error of the reflect-
ion coefficients in the LS lattice algorithms due to
round-off error.

4.2. Estimation Error in Coefficients of the Conven-—
tional Lattice Algorithms

In the conventional form of the a posteriori LS
lattice algorithm, given in Table I, the forward and
backward reflection coefficients are computed according

m+l(t) a (n)

and am(n—l) are computed by using (6), (11), and (13)
respectively. For the a priori algorithm the situation
is similar (see Table II).

to (7) and (8), where the quantitites B

We observe from (6), (11) and (13) that all three
of these equations have the same form. In the steady
state ag(n) is a constant, which is its mean value,
with a fluctuation around it. For X close to one,
ap(n) is also close to one, and hence, we may ignore
its effects. If infinite precision is used in the al-
gorithm, the mean value of a (n) is equal to the mean

value of [e (n)] . The variance of the fluctuatlon can
be computed by dividing the variance of’ [8 (n)]
{1-}).. If ) is close to 1, this variance 1s much
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R

The situation
The fluctua-

smaller than the squared mean of af(n)

for 8 (n) and o (n—l) is very 51m11ar.
tion is the cause of the self-noise.

The round-off error affects both the mean values
and the variances of af(n), ¢’(n-1) and B (n). By
considering the round-off error, (11) can™be rewritten
as

()Li(n) = Aai(n—l)+[e§l (n) ]Z/u;(n~1)+w(n) (40)

where w(n) is the total round-off error. Slnce u (n)

is 1/(1-)) larger than the mean value of [E (n)]

when A is close to one, the magnitude of the f1rst
term on the left side of (40) is much larger than the
magnitude of the second term. From numerical analysis
we know that the total round-off error, w(n), in this
case is determined mainly by addition and its peak

value is approximately egual to Z—baf(n) for floating

point arithmetic, and 27° for fixed point arithmetic
where b is the word-length used., Assuming that the
optimum scaling is used for fixed-point arithmetic,
namely\a (n) is close to 1, both cases yleld 31mllar

relatlve errors. In practical cases, [e (n)] /a (n-1)
is always greater than w(n). Hence, we can ignore the
contrlbution of the round-off error to the variance of
o (n) A similar conclusion is obtained in [17] for
tBe normalized LS lattice algorithm. The ma1§ effect
of the round-off error to the estimation of k_ (n) and
k°{n) is to introduce a bias in the estlmates. We
investigate this effect below.

The effects of the round-off exror on the bias of
the computed values of kf(n% and kb(n) depend on the
distribution of €i(n) ang (n~1) as well as on the
method of rounding. From the discussion given above,
- the dominant term is the error that occurs in addi-
tion. If we use b bits: to represent a;(n) or ¢ (n),
only about b+10g (1- A) bits are used to represent

[e (n)]

[em(n)] have a magnitude less than the least signifi-
cant bit (LSB) when using truncation (or half of the
LSB when rounding is used), they will not contribute
to the accumulation. In other words, there is a
"dead zone" around zero which has a width equal to

b+l(or 2" ) This dead zone causes a loss in the
computed results when a short word-length with a mag-
nitude smaller than the magnitude computed using in-
finite precision. This loss could be quite signifi-
cant depending on the d1str1but10n of af(n) and e (n).

or. [e (n)] In particular, when [E (n)]

For example, assuming Em(n) is Gaussian,[e (n)]2 w1ll
be chi-~square with one degree of freedom. his den-—
sity function becomes infinite at zero. In other

words, the loss of the terms of [ef(n)]Z and [Eb(n)]2
with a small magnitude which fall Into the 'dea
zone", will cause a significant accumulated error.
Even when rounding is used instead of truncation, the
computed value of af(n) or ab(n), will still be less
than its true value in magnitﬁde.

For B_(n), the effect is even more complicated.
We provide a rough discussion below. First, the dis-
tribution of €-(n)e (n) must have some symmetry around
its mean value. The effect of the dead zone is to re-
move the samples around zero and, hence, to move the
estimated mean toward zero. As a result the magnitude
of the estimated b_(n) is smaller than its true value
computed using infinite precision. However, the
amount of the shift depends on the distribution of
Ei(n) and eb(n), and it 1s dlfflcult to analyze.
Secondly, we know that B (n) is an estimate of the
c rrelatlon between € (nT and = (n), and usually
€ (n) ‘and ¢ (n) have the same variance. If the cor-

relatlon coeff1c1ent is close to unity, the distribu-

tlon of € (n)s (n) will be close to the distribution of

[€ (m)] and [Eb(n)] As a consequence, the effects
of"the dead zon® will be similar to the computed values
of both Bm(n) and aP(n). Since the forward and the
backward reflection coefficients are obtained by divid-
ing B_(a) by af(n) and aP(a), respectively, their com-
puted values are close to the true values computed by
using infinite precision. On the other hand, if the
correlation coefficient is close to zero, we expect the
dlstrlbutlon of ef(n)e (n) and the distribution of

[E (n)] or [E (n)] to be different. The computed re-
f18ction coefflclents in this case will be less accu-
rate than in the former case.

We have designed a computer simulation of a simple
scalar LS estimation to demonstrate the effects of the
round-off errors discussed above. The data sequence,
x(n), and the desired signal sequence, z(n), used in
the simulation are jointly distributed Gaussian random
scalar sequences with zero means and unit variance.

The correlation between x(n) and z(n) are chosen to be
0.2, 0.5 and 0.9. The LS error of z(j) based on x(j),
for j=0 to n, is computed according to (compared to
(I.16) for m=0),

e(n,3) = z(3)-k(n)x(3) (3=0...n) (41)
where
b(n) =, (n)/r, () (42)
In (42) r, (n) and T, (n) are defined as
()= Z N3G 5o (0= Z’A‘ 325 (43)

3=0

r
ZX(n) and T,

j=0

(n) are computed recursively as

rzx(n)=szx(n—l)+z(n)x(n) 3 rxx(n)=erx(n—l)+x2(n) (44)

The coefficients, computed using fixed point arith-

‘metic with a short word length, are given in Table TV.

Truncation is used in the computations.. As a compari-
son, the coefficients computed using floating point
arithmetic with 22 bits precision are also given. This
can be viewed as having infinite precision. From this
table we notice that, in general, when the word-length
is less than 9 bits, the accuracy of the estimated co-
efficients is unsatisfactory.

4.3 Error Analysis for the Error Feedback Formula

From the equations given in sections 2 and 3, we
note that the new formulas for estimating the reflect-
ion coefficients are 51mllar to the stochastic gradient
algorithm if we view o®*(n Yo~ (n) in (39) as a variable
step size. 1Its robustness to round-off error is mainly
due to this similarity. To understand this, we discuss
how the stochastic gradient algorithm works.

First, we consider, as an example, the scalar LS
estimation given by Eqs. (41) through (44). 1If we use
the gradient algorithm in this case, the algorithm will
be

e(n)=z(n)-k(n-1)x(n) ; k(n)=k(n-1)+Ac(n)x(n) (45)

From the orthogonality principle we know that the
optimum coefficient is achieved when €(n) is orthogonal
to x(n), or E[e(n)x(n)]=0. From (45), we note that if
at time n, k(n) is not equal to its optimum value, K,
we can write

k(n) = k+8k (46)

and assume §k>0. After N iterations, if we think k(n)
is a constant in this period, we have
n+N
k(otN) =k (n)+A)  €(3)x(3)
j=n+l
n+N
k(n)+A)
J=n+l

n+N
[2(3)-F, (1)-A] x2(j)E
: j=n+l1

1]

(47)
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Since k is the optimum coefficient, the first summation
of (47) is approximately equal to zero and the second
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