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RESUME

I'identification des systémes de Volterra
(c'est 3 dire des systémes constitués par
deux blocs en cascade: L'un recurrent, et

.L'autre, une function nonlineale) est un
probléme encore en evolution,

Ici, nous présentons quelgues resultats
obtenues avec L'empleoi d'un "filtre invers"
placé en cascade avec le systéme en course
d'etre identifié.

De la méme fagon, le filtre invers est
composé par la cascade d'un transfert
invers (un polynome de Taylor) avec un
filtre lineal invers. )

Les coefficients du transfert non-lineal
et du filtre lineal sont variés d'accord
avec un algoritme de convergence adaptative.

Aussi, nous présentons quelques examplés.

SUMMARY

A linear AR filter followed in cascade
by a non-linear-no-memory function transfer
ig a special class of a Volterra system
whose identification is of significative
importance in many fields.

In this approach we use the following
method: first we adaptively linearize the
non-linear transfer, and proceed
afterwards to the identification of the AR
filter using the standard moving averages
or lattice technigues.

Using this method it is possible to
identify Volterra systems with high contents
of high order exponents in the non-linear
portion of the system with great precision.

In the new method, the system to be
identified is excited with a known Gaussian,
zero mean random sequence, to obtaih the
corresponding output of the ARNLIF, The
identifier is placed in cascade with the
system and a certain number of adaptive
coefficients, each one controlling a
sucessive exponent of the system's output
are varied to linearize the non linear
transfer of the system, At the same time,
the MA (or lattice) portion of the identifier
is adapted to reduce the final error.

Many different types of systems have been
identified using normal and fast'adaptive
algorithms.~
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1.~ Introduction

Although the techniques for the
identification of linear systems are now well
established, and have been widely used, the
identification of nonlinear systems is still
in process of development. Some surveys on
this subject can be found in the references
[1-5]. In this work we deal with the case
known as the "block-oriented system"
consisting in a cascade of a linear system
(an autoregressive AR filter), followed by a
nonlinear gain, A more general system
includes another linear filter in cascade with
the mentioned two blocks and receives for this
reason the name of "sandwich" Volterra
system,

In our case the first linear filter is
excited by an input signal that will be a
discrete~time stationary zero-mean process,
and the nonlinear gain is a single-valued
nonlinearity.

For the case of finite impulse Tresponse
filter (corresponding to a "moving averages"
MA filter), and finite term polinomial
expansion of the nonlinear transfer function,
we have presented [6]an adaptive IMS method
of parameter identification based on Volterra
‘kernels expansion, resulting in a great but
still finite number of identified kernels. In
the same work we proposed and tested an
aproximate solution for an AR (infinite
impulse response) filter and weak nonlineanity
using the same method.

Obviously as the exact model would reguire
an infinite number of parameters the real
model is only aproximated, although the IMS
method asures minimum least square error
between the gystem and the identification
model.

In this paper identification is faced as
an "inverse problem" solution linking -in
cascade with the system to be identified~
an identifier model builded also as a
cascade of an inverse transfer that
linearizes the effect of the nonlinear block
of the system, followed by the inverse of the
AR filter of the system, that is to say a MA
or lattice filter. The input sequence {u(n)}
entering to the cascade of these four blocks
{u(n )} when the
adaptive identifier has evolved to the right

emerges as the same sequence

parameters. In the adaptive process the

output is an'estimated'ﬁ(n), and the

difference or error (u(n)-ﬁ(n)) is used to
correct the parameters of the identifier
using normal or new gradient algorithms [ﬂ .

In order to see how the identification
works, we will study first how the ILMS or
steepest descent algorithm can be used to find
the inverse polinomial of the nonlinear gain
block and afterwards appiy the method to the
identification of the "memory block" (linear
filter) and the nonlinear block,

2.~ Adaptive polinomial linearizing
We assume that the nonlinear blocék, with '

input x and output y is a single-valued non-

linear transfer y=P(X) , where P is a

Taylor (or McLoughlin) polinomial such: pg
Y=Oo+ G X+ C(.zxz-}-,..

Suppoge now that another tranfer function

2=Q(y) is applied on y in order to
obtain ZxX , where 2=bp +by +b2y2+...
given P(x), we want to get the coefficlents
of Q(y). That is Z=Q[P(X)_] such that Zax using
the adaptive ILMS steepest descent algorithm of -
Widrow-Hoff for each coefficient

by (n+1)=b; (M) +p.E(n) Y& osisy
where b, (n+) is ‘the i-th coefficient of Q(y)
at the instant (n+1), Jl; is a constant and
E(n)=(XGJ€@ﬁs the error,

Although the terms of the Taylor Polinomial
P(x) are not orthogonal slowing the convergace
of the coefficients, the use of a gaussian
noise at the input x, makes it possible to
find the coefficients bi after a certain
number of iterations. 2

Tets show an example: )’:P&):Q~3+'5X*D5X
and z= by +biy+b, y 4 b,y + by y*

The polinomial degree of Q(y) has to be in
general higher than the degree of P(x).

We use the following scheme (Fig. 1). The
sequence x(n) is zero-mean gaussian,
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After 2000 iterations we get the
following results: ha=~0.2i7143 ;: b= 0.775704
b,=-0.223506 ; b3=0.122899 ; by=-004822i3

No higher exponents were used, so Q(y)= bo
+by +ba ¥ + bay? + by ¥*

is the "almost inverse" polinomial of P(x)
in the sense of Q[P(X)]~x

3.= Adaptive AR inversion

Following the same idea, the adaptive
inversion of an autoregressive linear process
is a well established method., The problem can
be seen as the determination of the
coefficients & of an AR filter of order N
having the form

N
x(h)= L o x(n-i) + m(n)
<)

knowing the input and output sequences {u(n”
and {x(n)} respectively,
In the special case of a white n

oige
gaussian input sequence, it is not necessary
to know the samples, and the coefficients &
can be uniquely determined by the second-
order statistic of the process, solving the
classical Yule-Walker equations, i
Nevertheless in our case the soclution can
te seen as the linear inverse of an AR filter
of order N (having N poles) which is the
well known MA filter (having the same N zeros)
The method used to find the coefficients
is similar to the preceding one (Fig. 2)

/

. . A
w@)|l AR xt)|  MmA w(n)
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Fig2

where the estimated coefficients 6&' are
adapted by the algorithm:
ilner) = & (n)#pL - En). X (n~)
Eln) = wln) - U(n)
and the MA adaptive filter is
(L) =) & x(r=t) Nz W

If the ordeT N of the AR filter is unknown,
the identifier filter MA can be started with
an estimated N1> N but the convergence speed
will decrease.

Ocassionally the linear filter preceding
the nonlinear gain (or transfer) has AR and
MA coefficients (ARMA f%}ter) such as:

x(n) :l'=ZI x; X/"") +2 B u(nj)

TO
This filter has N péles M zerog in its

G5 <N

‘transfer function, and its inverse (an MA-AR

filter) has to have N zeros and M poles
superimposed and in oposition to those of the
ARMA filter.

The method of adaptive IMS (steepest descent
works well in this case. The coefficients ;a
and /30‘ of the MA-AR filtez;" ~ A

A -
ﬁ/n):é“;)((n-[)‘f'zp‘j M n(f}
= 72!
are computed from:

&\;/n-n)=o’<\/n)+/,l.,6(n).x/h-i) OSSN

4éj$ﬁ1

Bne) = o) + py £0) ()

where 6@}:«&)—£M)

4.« Adaptive identification of an AR
nonlinear system:

Previous works on the identification of
parameters in non-linear sistems can be
grouped in 1)non-linear filtering problem [8]
2)difference equations where the nonlineax
parameters are operated linearly {9], 3)state~
space approach with full input-output
measurements [ﬂﬂ . In all the cases a "paraleM
identifier is used (see Fig. 3) where the
same (or noise corrupted) input is used to
excite an "estimated" coefficients model in
order te obtain a similar "plant" output.-
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In this approach, we are¢ looking for an
inverse system where the "plant' output will
be transformed into an estimated "plant"
input (see Fig. 4).

. .
A(n) ‘ AR .._(".). NONLINEAR y‘(n)
FiLTER
“PLANT®

&(n)=1(n)-1L(n)

A X

MA 2(n)| NONLINEAR

FILTER INVERSE

N 4
/ ESTIMATOR®

Fig, 4

This is a limited case of the general
inverse problem: to find the operator m¥
such T*{T(u.)']:u.

The following relaticns hold: (n=0,1,2,3,
aes)

L
X(n) = (n)+2 X, X(h-1) (AR f£ilter)
. .

yin) = _ZO a; x¥n)

J=

(Taylor expansion)

N

L Inverse nonlinear
= b- L(fl) (
2(n) j;o 4 y block)

a |
j}_(n)=eZ P 2(n-L) (M inverse filter)
=0

£(n) = w(n) -0 (n) (error)
The coefficients bi and ,!69, will be
varied in an adaptive way in order to reduce
the error to a minimun (mean square criterium)
The gradient algorithm is used to update
the coefficients:

L
by tm+1)= b;(n)#—}-‘-z[‘j(n):l . E(n)
ﬁe(ﬂ-“) < ()JL (n)+ VQ . %(H-Q)E(h)

where}g and;& are constant (or very slow
decreasing) convergence factors.

This algorithm is intended to make the
coefficients bi and ﬁz converge to those values
that minimize the quadratic mean deviation of
the difference £(n), that is, of £[futn-Amf?]
a function of both sets of coefficients,

In spite of its simplicity, the adaptive
stochastic gradient algorithm is (in the
words of Ljung B1]) ", .. surprisingly more
difficult to analyze". {(than the recursive
least squares RIS algorithm)., Several
authors have addressed the convergence
problem but some of the assumptions have not
being fullfilled in the practice [12-14].
Nevertheless, the algorithm propcsed in this
communication has worked well in all of the
many tases considered,

In order to clarify the method employed
let us put an example: the "plant" will
consist of a simple AR linear filter followed
by a nonlinear (logaritmic) gain. No noise
is present.

xin) = u(n)+ 141 x(n-1)~0,6x(n-2)

yin) = da [xn)+2.3] }pla“t
the identifier will consist of a (truncated)

Taylor expansion of 6 terms followed by a MA
linear filter of 3 coefficients.

2(n) = b, +b, yin)+ bz)lz(n}'f',..
~ 2
uln)zpo2(n)+ J fy.2(n-2)

A uniform noise disdribution

identifier

is used as input and zero starting
coefficients. .

The variable x(n) was forced to be > -2.3
to avoid problems with the LOG function, the
constants are fL,=0.05 (¢:1.2,3)  and p =005 (v:1.23)
and the three last'ﬂé {o#¢JaTe respectively
0,005, 0,005 and 0,001,-
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Every 200 samples the relative error was
calculatesd using

Méif%%)

ERROR=

L(n)
Mm-200
and the evolution of the coefficients was lig

ted.In a typical run after 6000 cycles the
¢TTor falls down from 1 to abouté./0 (Fig.5)
remaining in similar levels. In order to de-
creage it

it Wwill be necessary to increase the number

of polinomial terms., There exists

the possibility of using a time

"window® to weight }lL and /14 but because
our "plant®™ in this case has not "noise" we
prefer to use constants ,u§ avoiding the possi
bility of blasing the coefficients if the U5
decrease very fast,

The coefficients values, after 6000 interations
result: h,=/1580! ; b, =0.815005 ; b3=0452143

bs=0,14179 3 bs=0,0799121 ; b, = 0.039229¢
and f3,=1.03274 3 Pi=—1.44T75 ; B,=0,608411

for the inverse polinomial coefficients,-and
for the MA inverse filter-respectively.
5.~ Conclusion

Many experiments confirm the possibility
pf using an inverse nonlinear filter to iden-
tify a Volterra system "plant" (an AR linear
filter cascaded with a nonlinear gaih) using
the (observable) input and output sequences
of the "plant". The algorithm used to find the
coefficients of the polinomic expansion of the
inverse gain and the MA linear filter is one
of the variants of the gradient method of Wi
drow-Hoff,
This method admits to be seen as a nonlinear

deconvolution method, because the inverse fil
ter can be used to deconvolve the output of

the Volterra system. In this case, a two steps
operation is necessary: a "learning" mode to
find the inverse and a "deconvolving" mode af-
ter it.-
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