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RESUME

Dans cet article est developpee une'approche. de
1'attenuation, dans un signal, des interferences
multiples et a bande etroite; cette approche
utilise, sous une forme modifice 1la methode
d'annulation variable du bruit. La methode
proposee est basee sur l'idee d'un filtre variable
‘clairseme ' c'est a dire possedant un nombre de
coefficients relativement bas pour rapport a sa
louguer ou l'intervalle de temps. L'implementation
de ce filtre est identique a elle utilisee pour
1'annulation variable du bruit. On suppose que
enplus des mesure (primaires) du signal et bruit, on
dispose egalement de mesure (reference) possedant
practiquement les meme ensemble d'interferences que
les precedentes. : ’
La difference essentielle entre les deux approches
reside dans le caractere 'clairsreme’ du filtre.

Les proprietes de ce filtre sont developpes
enrelation avec le probleme de 1'annulation multi
tonale et sont critiquees et comparees a celles de
1'annulation variable du bruit conventionele.

La methode d'annulation variable du bruit s'est
montree une approche puissante et flexible de
1'attenuation des interferences a seul composant
tous le montrous qu'en generale, cette methode donne
de moin bous resultats pour 1l'annulation de
multiples intereferences.

Dans la theorie existante, le systeme est remplace
par une function de transfert lineaire etre 1'entree
‘primares et la sortie,

Dans lecas d'un ensemble de sinusoides qui
inteferent avec le signal la function de trangfert a
la forme de M filtres 'notch' en parallelle et
centres sur les frequencies d'interference.

Cette description a 1l'avantage d'etre simple mais
n'est en general qu'une approximation, et la
precision de 1'approximation decroit longue le
nombre 4'interference a augmente.

Dans cet article une presentation plus generale de
la reponse est attenue, bien que demeurant toujours
une approximation.

Cette description est plus complice que la theorie
existant (dans laquelle la reponse consiste en un
compement linhearire et deux composants
non—lineaires), mais elle a l'avantage de fourni une
description satisfaisante de la repouns dans le cas
de multiples inteferences. Une description
similaire 'generalisee' de la reponse est egalement
developpee pour le filtre variable 'clairseme’.
Utilisant a la fois theorie et simulation, on montre
que les performances du filtre variable 'clairgeme’
sont en general superieures a celles de filtre
d'annulation du bruit conventionele.

SUMMARY

This paper develops an approach to the attenuation
of multiple narrowband interferences in a signal,
ugsing a modified form of adaptive noise
cancellation. The method proposed is based on the
idea of a 'sparse' adaptive filter, that is, one
with relatively few coefficients in relation to its
length or time span. The implementation of this
filter is identical to that used in conventional
adaptive noise cancellation {1]. That is in
addition to the (primary) measurement of signal and
noige, a second (reference) measurement consisting
almost entirely of a set of interferences similar to
those of the primary is assumed to be available.
The essential difference between the two approaches
is the sparse nature of the filter proposed here.
The properties of the sparse adaptive filter are
developed in relation to the problem of multi-tone
cancellation and are compared and contrasted with
those of conventional adaptive noise cancellation.
The adaptive noise cancelling method has been found
to be a powerful and flexible approach for the
attenuation of single sinusoidal interferences. We
show that in general it performs far less well for
multiple interference cancellation. In the
existing theory the system is replaced by a linear
transfer function between primary input and

output. For the case of a set of M interfering
ginusoids the transfer function has the form of M
parallel notch filters centred on the interfering
frequencies. This description has the attraction of
simplicity but is generally only approximate, with
the accuracy of the approximation decreasing as the
number of interferences increases. In this paper a
more general (though still approximate)
representation of the response is obtained. This
description is more complex than the existing
theory (with the response consisting of 1 linear and
2 non-linear components), but has the advantage of
giving a satisfactory description of the response
for multiple interfering tones. A similar
'generalised ' description of the response is also
developed for the sparse adaptive filter. It is
demonstrated using both theory and simulation that
the performance of the sparse adaptive filter is
generally superior to that of the conventional noise
canceller, both in terms of convergence rate and
steady-state attenuation. As a further bonus the
lower number of coefficients in the sparse filter
leads to a reduced computational burden.
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The application of adaptive noise cancellation [1]
to the problem of sinusoidal interferences has been
examined by Glover [2] who considers a system as
shown in Figure 1. The primary input is assumed to
consist of the signal plus a set of M interfering
sinusoids with amplitudes Bj, phase angles ¢; and
frequencies wj. A reference measurement is assumed
to be available and to consist of a set of sinusoids
of gimilar frequencies to those of the primary input
but with amplitudes Ay and phases ;. The aim is
to filter (using an IMS adaptive filter) the
secondary (reference) measurement in such a way as
to cancel the sinusoidal components from the primary
input, d(n). Glover {2] has shown that the
response of this adaptive noise cancelling system
can be approximated by a linear time-invariant
transfer function relating the primary input d(n),
to the error e(n). For the case of a single
interfering tone (M=1) the transfer function of the
gystem has the form;

E(z)
= (1)

oTa.2 oTA 2
D(z) {1— = }z‘2+ [——59— —2} z-lcosw T+l

1-2z"lcosw, T4z 2
H(z) =

where L is the number of weights in the adaptive
£ilter, a is the adaptation constant associated with
the filter and T is the sample interval for the
inputg x(n) and 4(n).
This transfer function is, however, only exact if L
satisfies

L= s N=1,2.... £ (2)

woT

in other cases the representation is only
approximate with the accuracy increasing with L.
The system has zeroes at z = e*1® T and for small
adaptation rates the poles lie at approximately
Zz = (1-o@A%/4)e*0 T.  qhat is, on the same radial
lines as the zeroes but aLA2/4 ingide the unit
circle. The composite system is thus a notch
centred on frequency w,. The bandwidth of the
notch is controlled by the distance of the poles
from the unit circle, and thus by «, L and A,.
In the time domain it is not unreasonable to
estimate the convergence behaviour of the system by
considering its response to an ihput consisting of a
pure sinusoid
ie dA(n) = Bycos(wsnT+H, )
with this input the response in terms of the

M1
4(n)=s(n)+ T B coslu;nT+s, )
i

’ M1
x(n)}= £ A cos(w.nT+6,)
1w i i i

Figure 1: Adaptive noise cancellation for
sinusoidal interferences .

approximate transfer function can be easily obtained
by inverse transforming equation (1), giving

21k
e(k)= c[l— SKEA;Tﬁ—Jco»s;((.)ok‘r—g) X1 (3)
where ¢ and { are constants.

The approximate transfer function can easily be
extended to the case of M input sinusoids (here we

restrict M to 2 to keep the algebra as simple as
possible. This is employed throughout the paper,
though in all cases the results could easily be
generalised).

Consider again Figure 1 with M=2, Glover [2] has
shown that as for the single sinusoid case, the
system can be approximated by a linear time_
invariant transfer function of the form:

1
H(z R Y Sy Wy arand 4
() = 36121602 ()
where
_ oaldy?2 zlcosw,T-z72
G(2z) = = 1-2z"lcosw T4z 2
and
_ oldg? z tcosw T—z"2
G2(2) = = 1-2z"lcoswy THz 2

The system has zerces at z = ¢¥10 T ang z = %10 T
and, neglecting terms involving a“¢ poles at

zZ

(1-aLBg2/4)e*10 T  and

z = (1-old,2/4)etiv,T

Thug the system coxresponds to a pair of notch
filters centred at w, and w,. In contrast to the
transfer function for a single interfering tone
(equation (1)), this system is exact only if it
satisfies equation (2) for both w, and w; and for
the sum and difference frequencies wg+w, and

wy~w; .  Note that these assumptions will be
particularly inappropriate for close frequencies
since wy—w; will be small and hence the number of
weights required to span m samples will be large.
This effect can he illustrated using a simple
example. Consider the system of Figure 1 with tweo
interfering tones (M = 2), with amplitudes, Aj, By =
1, and phases 85,45 = 0 and initially with
frequencies wg = 750 Hz and w, = 1000 Hz. The
noise canceller was applied with 16 coefficients and
an adaptation constant « = 0.04. The performance
of the canceller is determined by the magnitude of
the error signal. The log of this quantity is
plotted in Figure 2(a), and as canh be seen the log
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Figure 2: Log mafnitude of noise canceller output
(exror) for M=2. a) wy,=750Hz, w,;=1000HZ,
b)wy=750Hz, w,=740H2 )

error falls linearly before becoming approximately
constant. If the frequencies are now changed to a
clogely spaced wg = 750 Hz and w; = 740 Hz, say the
log error magnitude is changed to that of Figure
2(b). As can be seen, in this case the curve is
quite different being periodic and being at a much
higher level than the steady-state error in the
previous case. Consequently the performance of the
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. noise canceller is greatly degraded when the
frequencies are closely spaced. This, of course,
cannot be predicted from the transfer function
theoxy

which does not discriminate between the two cases.

Generalised Description of the Noise Canceller

Response

The extension of the transfer function to M
ginusoidal interferences is straightforward [2], and
gives a transfer function which consists of M
parallel notches at the frequencies wj. However,
this description is only exact if equation (2) is
satisfied for all the frequencies and all the sum
and Qifferences thereof. Consequently the transfer
function description generally becomes increasingly
inaccurate as the number of tones increases, and in
fact as we saw in the previous section can be
inappropriate with as few as.2 interfering
sinusoids. A more general form for the response
which is capable of accounting for these extra
effects can be obtained. For the single interfering
sinusoid this response has the form (the details of
the derivation are included in the Appendix):

E( 2 )=H( 2 }(D( 2 4G, ( 2) Yi( ze~210 T yp( ze~214To )
+ G,(2)H(ze*2WoT )D( zel2woT) (5)

where H(z) is the transfer function of equation (1),

2 Ll .
G, (2) = 5%9_ ( ¢ el2¢iy y(ze—iwoT) (6)
i=0
and
2 1 .
Ga(z) = e (f e1205) u(zelvor) 7)
i=0

U(z)=(z-1)"*

where ®, = ® —wyiT and in general
X(ze?) = z transform of (x(k)e X}

This generalised transfer function is depicted in
Figure 3. It is clear that the response is no
longer a conventional linear transfer function
between d(n) and e(n). It is instead the sum of
three components. The first component is the usual
linear transfer function relation, the other two are
obtained by heterodyning d4(n) at twice the
reference frequency, notch filtering using H(2)
rotated in the same manner and then filtering with a
first order system. These components are summed
and passed through the usual notch. The effect of
the non—-linear components of the response is,
primarily, to create an amplitude scaled and rotated
(in frequency) version of the linear response. The
magnitude of those components is determined from
G,(2), G (z) of equations (6) and (7) by texms of
the form:

L-1
= +j -
R _-2 e 12¢j
520

where ¢4=wg3iT

so that the magnitude of the non-linear terms is
proportional to

-1 . [ sianojTl
T elzwojTl = ________l (8)
j=0 sinwgiT

From this it can bé seen that the magnitude of the
" non—linear components is greatest as wpiT — O and
decreases as wgiT - 7/z becoming zero in this case,

a(n)

{2
afn)e™ g + (n)
I R < 8 E

s ool
-Il(ze ) I

]Gz(:) l
Figure 3: Block diagram for generalised response

so that equation (5) reduces to equation (1). The
time domain behaviour of the system can be
investigated by assuming that the interference will
be the dominant component of the input and
neglecting any other input. Substituting for D(z)
and H(2) into equation (5), partial fractioning and
inverse transforming yields approximately,(see [3]):

e(k) = PrKcos(wokT+8, )+korkcos(wokT+0, )

-where r = (1—“&%95) (9)

whexe P, Q, ©;, and 6, are constants.

Contrasting this with the comparable equation
obtained from the approximate transfer function
theory [equation (3)] it is clear that the effect of
the second term of equation (9) is always to
decrease the convergence rate since xrX - 0 more
slowly than X, Consequently consideration of the
linear transfer function description-of the response
generally leads to over—estimation of the
convergence rate.

A similar generalised transfer function can be

obtained for multiple interfering tones. For the
case of M = 2 the response takes the form:
8
E(z):ﬂ(z)[D(z) —iglGi(z)Hi(z)Di(z)] (10)
where
aox L=l .
Gy (2) = £ e21® ;u(ze~ 3Ty (11)
4 i=0
aox L1 .
Ga(2) = L e21®,;u(zeiv Ty (12)
4 i=0
ao’a L1 | .
Gy(z) = ——— L e2l® ju(ze™i0 T) (13)
4 i=0
ac’a L1 .
G (2) = £ e?i® ;u(zel®, Ty (14)
4 i=0
Agh, & 1 . .
Gg(z) = - L el(®oi-0;1)[u(ze iWoT )4uU(zel®, Ty}
4 i=0 (15)
AoA o I-1l ) )
Ge(2) = — £ el(®;i=oi ) u(2zeiv T)+u(ze 1w, T)]
4 i=0 (16)
Ach;a L1 . .
G (2) = ———— £ el(®.3+doi)1u(2zel¥,T)+u(2el®,T))
4 i=0 (17)
Agh; o L1 . .
Ge(2) = ———m [ oMby i+do3 ) [u(2e™i0 T4y ze 10, Ty]
4 i=0 (18)
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where 3
13
41 = $j - w3iT _ - log 10 E
H,(2)D,(z) = H(ze 120oTIp(ze~12w,T) magnitude A
Hy(2)Dy(z) = H(zel2T)D(ze12oT) 10 3
Hy(2)Ds(2z) = B(ze 1201T)p(ze"120,T) ———
Hy(2)Dy(2) = H(zel2w,Typ(zelzw, Ty 3
Ho(2)Ds(2) = H(zel(®;1765)T)p(zei(w;=wo)T) 10 7
—i(w,—w, )T ~i(w,~w,)T log E
Hg(2)Dg(2) = H(ze 1" %o+ )D(ze 1 %o ) magnitude 3
H,(2)D,(2) = H(zel(¥e+0, )T)p(zei(wete, )T) _2]
. i 107 3
Hg(2)Dg(2) = H(ze (ot )Typ(ge—i(wotw, )T) 3
T T T T T ‘

So that, in addition to containing the linear

time~invariant response due to the approximate

transfer function H(z), the response also contains
components due to the response rotated at both the
reference frequencies and components rotated at the
sum and difference frequencies. The magnitude of
each component is determined by a term of the form:

-1
R = [ ei¥T (19)
3=0

where, in this case,where V¥ may be twice either
interfering frequency or the sum and difference
thereof. This is particularly important in the
case of closely spaced interfering frequencies where
w;~wo ~ O, since referring to equation (8), the
magnitude of R will give rise to large non-linear
component.

A simple example can be used to demonstrate the
validity of the theory developed above. Supposge
the noise canceller is employed to cancel two tones
(M = 2 in Figure 1, with wg = 500 Hz and w, = 833
Hz, say, using 4 coefficients and with the
adaptation constant o« = 0.01. Figure 4(a) shows
the canceller output (error) and Figure 5(a) shows
its spectrum. From this it can be seen that in

Amplitude
(Linear)

Amplitude
(Linear) ; (AP Ay RADIE

T T T Y T

Time (secs) 0.1
Figure 4: Noise canceller outputs (M=2,w,=500HZ,
w;=833,3Hz), a)Conventional ANC, b)Sparse filter

addition to the main peaks due to the partially
cancelled sinusoids (during convergence) there are a
number of secondary components in the response.
Careful inspection of Figure 5(a) shows that these
peaks correspond to the non-linear (heterodyned)
components predicted by eguation (10) occurring as
they do, at wot2wg, —wot2w,, w,+2w,, etc.

0 3.3

Frequency (xHz)

Figure 5: Noise canceller error spectra (M=2,
wo=500Hz, w,=833.3Hz. a)conventional ANC, Db)Sparse

filter.

Sparse Adaptive Filters

A possible alternative approach to conventional
adaptive noise cancellation for naxrowband
interferences is based on the concept of sparse
adaptive filters. A sparse filter is one which has
relatively few non—zero coefficients in relation to
its length, separated by non—uniform time

intervals. For a transversal implementation of
such a filter the output would thus have the form:

v(n)=f(0)x(n)+E(L)IX(n-Ng )+ ... +E£(L~1)X(n-Nng-2)

We are concerned with sparse filters whose
coefficients are updated using the IMS algorithm.
The simplest example of such a filter has just two
coefficients (see Figure 6). The idea of two point

d(n) f-\ e(n)

_______ » (n)
£(%)

x(n)

Figure 6: Adaptive noise cancellation using a two
point filter

adaptive filters is not new, having been used for
some years in processing narrowband signals in
antenna arrays. Such filters have also been
suggested for notching a single tone in an adaptive
noise cancelling system [1]. Here we are proposing
the use of a more general M + 1 point sparse filter
for the cancellation of M tones. The configuration
proposed is shown in Figure 7. It is similar to
the conventional ANC set up, except for the sparse
nature of the input.

The performance of the sparse adaptive filter can be
easily evaluated in terms of the approximate linear
transfer functions described earlier. For the
simplest case (the two point filter) the result is

1 - 2z tcosweT + 272
H(2) = (21)
(1-oBd2)z™2 + (oAZ-2)z *cosweT + 1

(which is equivalent to the usual transfer function,
with L = 2) (see equation (1)). This transfer
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M1
d(n)=s{a)+ £ B,cos{w,nT+s.)
iw 1 1 1

@ e(n)

x(n} e
1:(0) J

delay

del
Figure 7: Adaptive noise cancellation using a sparse
filter.

function has zeroes at z = e¥1®T and poles
approximately at

WAZ N
z=(1 - ——2—') etlon.
similarly if there are two interfering tones the
response has the form:
1

A2 T e e (22
where
G (2) = xBAg? (2 tcoswgT — z-2)
1 T (1 - 2z tcosweT+z™ )
G,(2) = «A,2 (z7tcosw,T - z-2)

( 1 - 2z tcosw,T+z72)

However it should be recalled that the transfer
function for the multiple sinusoidal interference
case will not normally be exact, and that the
accuracy of the approximation increases with the
number of filter coefficients. Consequently,for the
sparse filter the result will have particularly
limited accuracy. It is important, therefore, to
try to quantify the behavour of the filter in terms
of the more general 'transfer functions' of the
previous section. Using the same approach as
employed in the Appendix, the generalised response
for the 2 point filter is found to satisfy equation
(5):

E(z) = H(z)D(2) + G,(z)H(ze 230;T)D(ze~230,T) +

+ G (2)H(2e210,T)D(zel2®T)) (5)
with
o, 2 _a
Gy (2) = __49 (e:.znomoT + 1) U(ze 1o)°T)
2 . .
GZ(Z) = S%Q (e—lznoon + 1) U(zelwo'l‘)

That ig, the response has exactly the same form as
equation (10) for the conventional ANC, only the
complex scale factors, Gj(z) for the non-linear
texrms are different. Similarly for the
multi-sinusoidal input case the form of the response
is identical but the complex scale factors vary.

In this case

L1
rela®gi becomes

i=0

(1 + eiznowLT) and

-1
relz®;i  becomes
i=0

(1 + e*12njw,Ty ana

where it should be recalled that the magnitude of
these terms controls both the convergence time of
the system, and the magnitude of the spurious
components in the frequency response.

Consequently, the analysis of the behaviour of the
sparse adaptive filter versus the behaviour of the
conventional ANC for multitone cancellation reduces
to the comparison of the above terms.

Now, in general

sinLejt
L1 I
ie.Ti - |2 _
Le™5t = 7T eiT
]=0 Sln——i

For the sparse form the first four terms are
evaluated as iei®| = 1, so that the sparse form will
have smaller coefficients for frequencies such that
wj < 27/L. For the sum and difference frequencies
similar rules apply, that is, if the sum and/or
difference frequencies are less than 27/L the sparse
formulation will be superior. The difference
frequency is particularly relevant if the sinusoids
are closely spaced since the difference will then
usually be << 2m/L unless L is very large {in which
case the computation may be prohibitive).

In addition to the likely superiority of the
frequency domain behaviour of the sparse
formulation, it will also generally have superior
convergence properties. This latter characteristic
is due to the fact, asserted earlier, that the
convergence is decreased as the filter spacing moves
away from 7/L at the relevant frequencies.

These observations are illustrated using a few
simulations. Figure & {(a) and () cghows the
responses for a single 4-point ANC and a sparse
3-point filter when supplied with 2 sine waves (500
Hz and 833.3 Hz) as both reference and primary.

Both filters had the same adaptation constant (« =
0.01) but it is clear that the sparse filter
converges much more quickly. The modulus freguency
responses (for the error) are shown in Figure 5 (a)
and (b). It is apparent that the sparse
formulation has led to a reduction in the
heterodyned components of the response. when
compared with the 16-point ANC [Figure 8 (a) and
(b)], the sparse formulation is no longer markedly
superior but, of course, now has considerable
computational advantages.

D

Amplitude

(Linear) ¢ Gl

-
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log 10
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Figure 8: Noise canceller output (M=2, wy=500H2Z,
w,=833.3Hz, 16 weights) a)Time domain b)Modulus

spectrum
Conclusions

It has been demonstrated that whilst ANC is a

_powerful approach to the cancellation of single

interfering sinusoids it often is far less
successful for multiple interferences. It was
found that these differences are not explained by
the existing linear transfer function theory,
however, the generalised new theory developed in
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—

this paper gives a more complete description of the
response which appears to describe thege effects
adequately, The sparse adaptive filtering approach
proposed as an alternative method to the
conventional ANC has been found to be generally
superior in terms of both attenuation of the
interferences and rate of convergence.
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Appendix

In this appendix we derive the general form for the
adaptive noise canceller response of equation (5).
Beginning with the IMS update equation

fx+1(i) = fx(1) + ae(k)x(k-i) (a1)

where fy(i) is the kth update, « is the adaptive
constant and x(k) is the reference input.

For the single interfering sinusoid

x(k—-1) RAgcos[wokT-o04 ]

Bo [iuokTemity 4 gmitgkTeits]

where 4j = ¢p + WiT

Following Glover [2], we may write

ZFj(z) = Fi(2z) + — [e1® E(2e 19 T )4 e i®ip(zei®woT)]

2
Fi(z) = 22 u(2) [ei¢iE( ze~10oTy 4 e=it; Tr(zeiwoT) ]

(az)
where Fj(z) is the z-transform of the ith filter

coefficient, U(z) = (2-1)~%, and where we have used
the fact that

Z transform of [e(k)e 1WoK] = E(zelWeT)

Also
I~1 -1

(k) = L fxr(i)x(k-i) = £ ¥5 say (A3)
i=0 i i=0

where yj = £ic(1)X(k-1)
so that proceeding as before we may obtain Yi(z) as

2 N N
Yi(z) = 9—9}— alU(ze MgT) + U(zel® T)]1E(Z)
2 . - .
+ 2% alelz®;u( ze~1W Ty 1E(ze~120,T)

2 . . - -
+ 2—‘%— afe—12iy( zeit 1) 1E( ze2i0gT) (24)

-1
Now substituting this equation into Y(z) = [ Yi(z)
i=0

and using ¥Y(2z) = D{(2z) - E(z) we obtain

D( 2 )=R( 2 )E( 2 4G, ( 2 )E( 2~ 1200T )4G, (2 )E( 26120, T) (a5)

where
2 2

(1- E%é_ yz©<2 + 2( 2%5_ —1)coswgTz ™ 1+1

R(z) - - (A6)
(1 - e 151,11y (1 - edo,T—1)

I L s P iw,T

Gy(2) = ~a (igoe i) U(zet¥@or) (A7)
2 -1 . -

Gx(2) = E%— (igoe‘12¢i) U ze~1WeT) (a8)

At this point Glover assumes the second and third
terms of equation (AS) to be negligible, which leads
to the transfer function of eguation (1), with
R(z)=H (z). (Actually, a more straightforward
demonstration of this result exists [3].) Here,
however, we are concerned to quantify the extra
effects.

From (AS) it follows that

D(zel20T) = R(zel20 T)E(zel2w,T) 4 G, (zel20oT)E(2)
+ G,(2e120.T) p(zelew T) (29)

and similarly for D(ze~i2¥ T) go that, from equation
(A9)

eizw T

G Di 4
._Zg.%%_z_ge%ﬁ;rg_z = G,(z)E( zelzb)oT) +

Gy(2) G,(2zei® TYE(z)
R( zelzon )

Go(2) Gp(ze*29 Ty F(zelsw,T)
iy (r10)
and similarly for D(ze 126 T)
G.(2z)D(ze~12w T s
(R()z.(a——zwo'l’) =) = 6y (z)E(zemi20GT) +
+ Gu(2) Gy( ze~i20 Typ(ge—i4w Ty
R(ze120,T)

G,(2) Gy(zel2e Ty m(2)
R( zelzwo'r)

+

4

(All)
Finally, re-arranging these two expressions,
suwbstituting into equation (A9) and neglecting

O(x?) yields

B(z)= H(2z) (D(2) + G,(z)H(ze 218 Ty p(ze~2iw,T)

+ Gy(z) H(zel20 Ty p (zeizw Ty) (5)

where, as before H(z) = l/R(z) is the transfer
function.



