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RESUME

Les codes correcteurs d'erreurs sont
employés pour assurer la fiabilité de la
transmission de domnées sur des voies bru-—
yentes . A cet effet, les chercheurs dans
ce domaine se sont efforcés de trouver
des codes aysnt de bonnes performances ek
de concevoir des techniques de décodage
efficaces et pratiquement réalisibles .
Certaing procédés de décodage sont basgés
sur la structure algébrigue des codes .
Ceux-ci sont alors appelés les techniques
du décodege algébrique . Ces procédés sont
de complexité acceptable et sont utilisa-
bles pour de larges classes de codes liné-
al1Tres .

En ce traveil on considére une classe
importante de codes, les codes BCH . Berl-
ekamp a présenté une simple algorithme ré-
cursive pour décoder les codes BCH . Massey
démontra que le procédure de décodage, est
le meme que celui dqu synthege d'un registre
a décalage rebouclé lindairement de longu-
eur minimale, capable de générer une cert-
aine gséquence de symboles .

Les performances du décodage ont &té
effectuées sur un canal gaussien enm utili-
sant des codes BCH binaires et non binsir-
es . Dansg le cas de codes BCH binaires, on
utilise le code BCH(15,7,5). La performan-
ce du décodage de codes Reed-Solomon a 3té
considérée comme un exemple de codes: ney
non bingires . En ce dgmeine, on congidere
un systeme concaténé oui un code de Reed-
Solomon est utilisé comme un code extéri-
eur o On utilise l'algorithme de Berlekamp
~Massey pour le décodage extérieur seule-
ment .

Enfin, on présente une simple modifi-
cation de 1l'algorithme de Berlekamp-Massey
donnant la possibilité de corriger des er-
reurs ainsi que des effacements . Les ré-~
sultats obtenus par simuletion quand on
utilise 1'algorithme modifide, montrent
1'amélioration de performance bien que _
la complexité du décodage soit a peu preés
la meme .

SUMMARY

Error correcting codes are used to
ensure religble data transmission over
noisy channels . To achieve this purpose,
several works have been devoted to find
high performance codes as well as practical
cal decoding techniques . Some of the de-
coding approaches depend on the glgebraic
structures of the codes, therefore they
are called algebraic decoding techniques .
These techniques are of reasonable comp-
lexity and can be gpplied to a large class
of linear codes .

In this paper we deal with an impo~-
rtant family of codes which is the BCH
codes . Berlekamp has introduced a simple
iterative algorithm for decoding BCH
codes . Massey has shown that the deco-
ding procedure is the same as that of
synthesizing the shortest linear feed~
back shift-register capable of genera-~
ting a prescribed finite sequence of
digit S e

The decoding performance hasg been
studied for an AWGN channel using binary
and non binary BCH codes . The decoding
performance of Reed-Solomon codes is stu-
died as an example of non binary BCH
codes . We congider e concatenated system
where a RS code 1s used as an outer code,
We apply the Berlekamp-llasgsey algorithm
only for the outer decoding .

Finally, we present a simple modifi-
cation of the Berlekemp-liassey algorithm
to use it to correct erasures and errors.
The decoding performance results -over
an AWGN channel- show clearly the additi~
ongl gein obtained by the modified algo-
rithm . Moreover, the decoding complexity
is nearly the same .
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I. INTRODUCTION

Spite of the different forms of deco-
ding schemes and the mathematical rules
that govern them, they all make use of re~
dundancy . The redundant symbols are used
to accentuaste the uniqueness of each mes-
sage hence they help fto clear noise~-intro-
duced errors .

In this paper, we shall deal only
with a class of linear c¢yclic block codes
which 1s BCH codes .

The BCH codeg form a subclass of cy-
clic block codes . For any positive inte-
gers t and m such that (t<2m-1), there
exists a BCH code whose block length, n =
2m.l, number of parity check digits, n-k
& mb, and minimum distance, d 22t + 1 .
Such g code is capable of correcting any
combingtion of t or fewer errors .

II. ALGEBRAIC DECODING OF BCH CODES

The algebraic decoding is a decodi-
ng procedure of reasonable complexity
which enables the correction of a fixed
number of errors (in terms of the code
characteristics) . It is used for a large
class of codes ., Studying it for cyclic
codes and specially for BCH codes, we
found that the decoding procedure consists
of two major steps : syndrome calculation
and the processing of the syndrome to de-
termine the error pattern . The latter
step 1s much more complicated and, nece-
ssitates, as we shall see later, the de-
termination of an error-locator polyno-
mial whose rootg are the errors' posi-
tions .

III. BERLEKAMP-MASSEY DECODING ALGORITHM
FOR BCH CODES

Berlekamp presented an itergtive
algorithm /5/ giving the error-locator
polynomial . llassey showed the equiva-
lence of the decoding problem for BCH
codes to a shift-register syntesis pro-
blem /1/ . Thus, using the Berlekamp-
dassey algorithm, the problem of evalu-
ating the error-locator polynomial, is
as simple as the problem of gynthesizing
the shortest linear feedback shift-regi-
ster (LFSR) . Such a LFSR is capable of
generating a prescribed finite sequence
of digits (which is the syndrome seque-
nce in our case as will be shovm later) .
For the above reason, we give the pre-
sentation of a decoding procedure for
BCH codes using th Berlekamp-Massey
algorithm .

ITI.1 Notation and Formulation of the
Problem

Suppose the codeword v = (vg, Vi,
....vn_% » veC is transmitted over a
noisy chennel and corrupted by the addi-
tive noise ¢ = {ey, e, eeesep_1) .« Then,
the disturbed vector r = e + ¥ iIs recei-
ved . The decoding problem is to deter~
mine g, given T .

Let u(x) be the polynomial representation
of the vector y such that, u(x) = uy +
VX + eso0e + um_le- .

Ass9ciating polynomials with r, e and ¥,
we have :

r(z) = e(x) + v(x) (1)
Assuming the Hamming weight of the
error vector e is such that :

wt(e) = 8<% (2)
Let ai indicate the positions of non-
zero elements in e, then we can write
the error polymomial in the form :

[°]

e(x) = Z eai xai (3)
A=1
Let Xi =@ and Yi = eg; 4)
hence . 1 ;
e(od) =2 ¥; XY (5)
i=1

X; is called the error locator and it is
an element of GF(qM) while ¥; is called
the error magnitude snd is an element of
GP(q) . For binary codes, q = 2, the
error locators completely describe the
error pattern since Yi = 1 . On the other
hend for non binary codes (Reed-Solomon
codes for example) both X; and ¥j belong
to GPF (qm) . ..
The decoding procedure cen be divi-
ded into three steps :
1. Calculetion of the syndrome . .
2. Pinding the error-locgtor polynomial
and its roots .
3. Determining the value of the errors
(in case of non binary BCH codes) .
Thege procedures are illustrated in Fig.l.

ITT.2 Syndrome Calculation

For decoding a BCH code, the syndro-
me is defined as a vector S %1th-2t.cnmpﬁ
onents as follows /4/ :

Sq = r(o<3:-) = e(ogi) + v( a<i) =

e(O(l) ie (1, 2, 000021;)
(6)
end f£rom equation (5) :
e i
S; =& Y5 X3 (7

which are ;lso called the power sums .
III.3 The Error-Locator Polynomial

We define the error-locator polyno-
mial :

o(Z) = II (2-%4) (8)
i_errors )

The element i , «1e& GF(qM), is a root
of o (2) if aend only if an error has
occurred in positiomn 1 (Xp) , (see equ~
ations (3) and (4)) . )

let E(Z) be the infinite degree
syndrome polynomial written as /2/ ¢

;‘_i -j+1
E(2) =£4E; 2 neze.
=2%; v, 25 %2
2%, Y, (% zhy/ -z, 2T
-1
Y, X /(1-X; 2 )(9)

that E(Z) may be reduced to a
(2) is the denomi-

where Ej = Sj

1)

1l

Wle notice
fraction form where
nator :

E(z) = 2° B(2)/ 0~(Z)

Only the first 2t coefficients of E(z)
geries are known . This information i1s

(10)
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quite enough to determine ov(Z) since we
have assumed that (6< %) . Equation (10)
ig celled the key equation of the deco-

ding process .
IIT.4 Solution of the Key Equation

Since the coefficients of the poly-
nomial E(Z) are known only up to the coe-
fficient of 22t-1l, so in terms of these
known coefficients and with the substitu~
tion of 2 by D-l, equation (10) cen be
written as :

S(D) ¢(D) = R(D) moa-D3¥ (11)
where S(D) =%¥ S, pi-1 (;E(Z%_ﬁ?ere
c(D) =1De o(D-1) (re;iprocal poly=-

nomial of ov(D)
(= P(%) where 7
= D)

The Berlekamp-Magsey decoding algo-
rithm used to obtain the reciprocal of : -
the error-locator polynomial ov(D) ; C(D)
is given in /1/ .

and - R(D) P(D-1)

ITI.5 Determination of the Error Values
This step is required only when de-
coding non binary BCH codes . Po deter-
mine the value of the error in the i-th
position , i.e. ¥;, we proceed as follows:
referring to equations (9), (10) and (11)
we nave :
5(D) = R(D)/C(D) =
£, Y X /(1-X; D) (12)
From equation (12) :
R(D) = ¢c(D) = ; ¥ X,/(1-X; D)
=& i Yi Xi gii (l—Xj D) (13
Consider the derivative of the polynomial
C(D) ; ¢ (D) :
¢'(D) = -, X, ITI (1-X. D) (14)
Pt Y
Substituting (14) in (15), it becomes :

R(D) = -C' (D) Zi Yi

i

and hence for a certain error in position
i, (X1), we have :

R(Xi'l) = =Y; C'(Xi“l)
from which the value of the error is :
_ ~1 <. -1
¥, = R(X;7) /0 (X 74) (15)

ITI.6 Berlekamp-Massey iAlgorithm for a
Concatenated System

As an example of a decoding scheme
using the Berlekamp-Massey algorithm is
the concatenated system /6 / .

e consider a two stage concatenated code
where a non binary BCH code, the Reed-

Solomon code, is_used as an outer code .
iie apply the Berlekamp-lizssey algorithm

for the outer decoding, while meximum .
likelihood decoding is assumed for the
inner decoder /7 / . The overall perfo-
rmence is studied over an additive white
geussian noige, (AWGN), channel .

IV, CORRECTICN OF ERASURES AND ERRORS

It has been recognized that there
are advantages in allowing the demodu-
lator not to guess at all on certain
transmissions when the evidence does not
clearly indicate one aignal as the most
probable ; such events are called "era-
sures /3/

The decoder has as goal now, to cor-
rect all the errata which consist of two
types : erasures, whose locations are
known but whose values sre unknown, and
errors, whose locations and values are
both unknown .

Algebraic decoding algorithms can
be modified to handle erasures efficie-
ntly . In the next paragraph we explain
how the Berlekamp-Massey algorithm can
be modified to deal with this situation .

Congider a code of minimum distance
d, .all combinations of v channel errors
%ﬁd e erasures are correctable providing

hat :

2v + e<d (16)
The Modified Algorithm '

We define % (D) = IT (1-%" D)
1 erasures
to be the reciprocal erasure-locator
polynomigl, of degree = e
e have :
1) 0%(D)—C(D) 1—B(D) 1l—x
0 —L 1—D e —~—N

2) If N = n, stop . Otherwise, compute
: I' = L + e
L'
d=S; +& c; S, .
{ =1+ Wi

3) Ifd=0, x + 1—x and go to 6) .
4y If @ ¢ 0, and 2L> N-e, then

c(d) - ab~l p% B(D)—C (D)
X + l—eX
go to 6)

5) If 4 $# 0 and 2Lg N-e, then
C(D)—=T(D) (temporary storage of C(D)’

e | -~
c(D) - dab * D™ B(D)—>C(D)
N+1-L~-e—=1L
7(D)—B(D)
d—b
l—ex

6) N 4+ 1—N and go to 2) .

Where n is the syndrome sequence length
(2%), L' is the register length, oi are
the syndrome sequence iterms and G(D) =

1L +¢l D+cep DE + eoae +Cpp0 DY,

gives the reciprocal erasure gnd error
locator polynomial . The syndrome terms
gre calculated using a modified received

- word obtained by replacing the erasures
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with zeros .

In the original algorithm, C(D) is norma-
lized by 1, and X (the iteration number)
is normalized by O in step 1) . Also the
register length is equael to L . The resu-
1ting C(D) using the original algorithm
ig clearly the reciprocsl error-locator
polynomial .

The roots of C(D) (obtained using
the modified algorithm) give, the erasu~.
res and errors locations . Since the
erasures' positions are already known,
hence, the errors' positions.canr be dete-
rmined . To find the value of an erasure
we use equation (15) .

V. DECODING PERFORMANCE OF BCH CODES

Computer simulation has been carried
out over an AWGN channel to study the de~
coding performence of the Berlekamp-Magsey
algorithm for bingry and non binary BCH
codes . The same channel has been chosen
to study the decoding performance of the
modified algorithm for binary BCH codes .

V.1 Decoding Binary BCH Codes

The simplest case to be considered
is that of antipodal signalling over an
AWGN chamnel .

Let X be the output of a matched
filter .« It has a gaugsien distribution
with mean equal to S VE and variance equal
to No/2, where E is the energy received
per binary symbol, S = (-1L)¢ (¢ represents
the transmitted symbol) and No is the one
side spectral density of the noise .

The demodulator guesses which symbol
is transmitted according to its sign .

For a t-error correcting BCH code of
length n, the word error probability is
given by the probability that more than
t errors occur in a codeword, i.e.

p, =2 (n)pl (1-p)™~* (17)
WoistriMd
where p is the symbol error rate on the
considered channel . For a gaussian chan-
nel, p = Q( N2E/No) . Assuming that a
pattern of i channel errors (i>t) will
cause the decoded word to differ from
the correct word in i + t positions and
thus a fraction of (i + t)/n of the k
information symbols to be decoded errone-
ously . Thus, an upper bound of the sym-~
bol error probability for BCH codes is
given by :

P & L21T (n)pl (1-p)™*™*  (18)
5% ©

Considering the erasures and errors
decoding, the channel outputs can be re-
presented as shown in Fig.2 . We can say
that the demodulator output has been
quantized into three levels as shown in
Fig.d o
The decoding performance results over an
AWGN channel of the BCH(15,7,5) code are
given in figures 4 and 5 .

We have consgidered the cases where
single, double and three erased symbols
are allowed . Also we congider the case
where the number of erased symbols is
arbitrary . If the number of erased sym-
bols exceeds d-1, the decoder passes the
received word as it is with an indication

that it failed to decode it . We have ,_
chosen two threshold values, T = 0,05 N
and O.lﬁ;g .

V2. Decoding Non Binary BCH Codes

As we pointed earlier, in section
II1.6, we gtudy the decoding performance
of Reed-Solomon codes, as an example of
non binary BCH codes, in a concatenated
system . The gimulation results of the
concetenated code(105,44,15) consisting
of the Hamming code(7,4,3) as an inner
code, and the Reed-Solomon code(15,11,5),
as an outer code, are given in figures
6 and 7 .

The Reed-Solomon error probabilities are
bounded by equations (17) and (18) . In
this case, p is the Reed-Solomon symbol
error probebility at the outer decoder
input and can be determined by simuletion.

VI. REMARKS

From the simulation results, we found
that a coding gain of about Q.4 db, at a
bit error probability of 10-4, can be ob-
tained in the cage of erasures gnd errors
decoding . This gain depends upon the ch-
ocice of the quantization levels . When a
single erased symbol is consgidered, the
gain is around Q.3 db at a bit error pro-
bability of 10~4 , When two erased symbols
are allowed, we get a gain of about 0.8 db
gt a bit error probability of 10-4 .

It is evident that with the modified algo-
rithm we canwiet an additional gein of 0.4
db compared with the eriginal algorithm ..
The sdditional gain obtained with the mo-
dified algorithm, is due to the fact that
more information is passed to the decoder
(by the demodulator), thus improving its
performance .

"It is clear that the thresghold choice
affects the decoding performsnce . By a
proper threshold choice, better results
could be obtained . Also the number of
allowed erased gymbols greatly affeets
the performance .

We have only considered the decoding
performance over en AWGN chamnel ; however
the applied modified algorithm will be of
more benefit on certain interference cha-
nnels, where the interference may be trea-
ted as erasures .

Finally, for non binexry BCH codes.

a coding geain of about 3.9 dbs at a bit
error probability of 10-4, can be obtained.
On the other hand, on obgerving the output
of the outer decoder, we get an improvement
of about 3.5 dbs as compared with itz input
at a symbol error probability of 10-% .,
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