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RESUME

On a developpe une nouvelle famille de transforma—
tions discretes et ortogonales (unitaires) en sti-
pulant que la representation de la transformation
reelle discrete Fourier soit formulee par une nou-
velle groupe de fonctions basics formant 2 matrices
factoriels etant orthogonal. La premiere transfor-—
mation consiste des nouvelles fonctions basics
comme une convolution circulaire. Les antres trans—
formations santen analogie avec les transformations
reelles discretes Fourier, sinus, cosinus symmetri-
que, et discretes Fourier en replacant sin2lmk/N et
cos?Tmk/N avec z(nk/N) et z(uk/N+l1/4),respective~
ment, on z(.), avec elements de 0 et puissance de
Ji: est la fonction construee pour obtenir des
matrices orthonormales.

Avantages et applications possibles des transfor-—

mations sant discutes.

SUMMARY

A new family of discrete orthogonal (unitary)
transforms are developed by requiring that the
representation of the real discrete Fourier trans—
form in terms of a new set of basis functions
results in 2 mattices of factorization which are
orthonormal. The first transform consists of the
new basis functions in the form of a circular
convolution. The other transforms are similar to
real discrete Fourier, sine, symmetric cosine, and
discrete Fourier transforms with the replacement

of sinZWnk/N and cos2Tmk/N by z(nk/N) and z (nk/N+1/4)
, respectively, where z(.), with elements of 0 and
powers of V2, is the function constructed to achie-
ve orthonormal matrices.

Advantages and potential applications of the trans-

forms are discussed.
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1. INTRODUCTION

Discrete trigonometric transforms are very important in a variety .

of applications. In a previous article, we discussed real discrete
Fourier transform (RDFT), which corresponds to Fourier series for
sampled periodic signals with sampled, periodic frequency responses
just as discrete Fourier transform (DFT) corresponds to complex Fourier
series for the same type of sigpals [1]. RDFT is better than DFT in
data compression, Wiener-filtering and computation of real convolution.
RDFT is also very useful in designing fast transforms which approximate
Karhunen-Loeve transform more optimally than other orthogonal trans-
forms such as discrete cosine transform (DCT) [2].

RDFT can be represented in terms of Mobius basis functions instead of
sines and cosines [3]. This results in the factorization of the RDFT
matrix into 2 matrices. The first matrix, with elements 1, -1 and O,
is obtained by replacing cos2sk/N and sin2xk/N by u(§ + %! and u(t),
where p({x) is the bipolar rectanyular wave function. The second
matrix is block-diagonal where each block is a circular correlation
and consists of the Mdbius basis functions.

DFT and DCT are related to RDFT by simple orthonormal matrices [4],
[5]. RDFT is, in turn, equal to the direct sum of discrete symmetric
cosine (DSCT) and sine (DST) transforms after preprocessing of the data
vector with a simple orthonormal matrix [1]. As a consequence, it is
possible to factorize all the discrete trigomometric transforms in_the
same way using MSbius basis functions.

It is desirable that the two matrices of factorization are also ortho-
normal, theteﬁy defining new discrete orthogonal transforms which also
factorize discrete trigonometric transforms. In order to achieve this,
the theoretical development in [3] will be generalized by replacing
the bipolar rectangular wave function p(x) by another function z({x)

to be defined. z(x) will be chosen to “:ave the same properties as
u{x). The number of data points N will be restricted to powers of 2 in
this introductory article. For such N, some of the properties of z(.)
(or u(.)) are [3]

oy, - 4,1
z (N) = z(N + 2) (1)
e @ed =B (2
n, . _, N1
z (@) = 2 n 3

With respect to these equations, z(g + %) and z(g) are isomorphic to
cos2¥n/N and sin2wn/N, respectively.

sin2wn/N and cos2xn/N will be represented in terms of the new basis
functions b(ni,N) as before, given by

N-3 =.n
sin2ed = [ blm,N)z (=) )
N 1 N
m =1
1
N-3 m.n
costg = [ bim,H)z (‘1' + 1) (5)
_ N T3
m =1
1
where m, equals 1,5,9 --- (N-3).

It is seen that the composition of sines and cosines in terms of the
new basis functions follows exactly the same procedure as before, with
the replacement of p(.) by z(.}. As a consequence, the subsequent de-
velopment of the matrices of factorization also follow§ the same pro-
cedure, with the additional requirement that they be orthonormal.

The final results will be two types of transforms. The first one con-
sists of the new basis functions in the form of a circular convolu-
tion. The second type of transforms will be analogous to RDFT, DSCT,
DST and DFT with the replacement of sin2wnk/N and cos2mnk/N by

z(N ) and z(gx + %), respectively, The values of z(.) are 0, and
powers of /2,

.2, THE FUNCTION Z(.) AND THE NEW TRANSFORMS

The function z{.)} will be constructed to satisfy (1) thru {3).
Setting n equal to O in (5) and requiring that the sum of the
basis functions equals 1 as before {3] gives

2h =1 (6)

Since z(.) is isomorphic to p(.), it has to be periodic with period 1.

Using (4) twice with the parameters &

8 and &0 jngicates that the fol-

lowing equation is still true:

bmy.M) + bm + 50 = bay ) n

RDFT is given by {1]

(x) N-1
Ly oz 2umk
v /N 50 x(k)cos N . (8)
/2 N-1 . 2mmk
Xy(m) = N E x(k)sin X (9)
where
B =012 - N (10)
N, = § if N evel
152 n (11)
=51 if N odd
a =1,2,3, --- "n - (12)
Ny =By if N eve
b = 3 n (13)
=B if N odad
vin) = 1 neo 8 (14)
- L = B
7 n=0 3

Using (4) and (5), (8) and (9) with N equal to a power of 2 can be
written as

N-3
Xq(n) = LD (B, ,N)h, (m nmodN) (15)
p, =1
1
N-3
xo(m) = E b (m1,N)ho(m1modN) (16)
n =1
1
where
h,{(n) N-1
s A, nk , 1
v = [, K0z e (n
N~-1
@ = 72 1 xmz®) (18)
k=0

Assume that n and m in (15) thru (18) run between the limits O

and N-1 with the understanding that xi(n) = xi(N-n) and xu(ml =
-xo(N-m), Doing the permutations nor m « Zm&n mod N,m‘ - ak mod N,
where a equals -3 or N-3, and using (7), (15) and (16) can be
written as {3}

m_n M, -1
x,(2 a modN) 1
So——— =72 ¢ bt mn, (2% ¥ moan) (19)
v(2 a"modN) k=0
H1-1
%, (2% modN) = /& £ b(a¥,mn (2" *uoan) (20)
o N Do o

where

M= n2" (21)
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M, = M/4 M4 (22

® =0,1,2, --- logzN (equation (19)) (23)

=0,1,2, --- loqu-Z {equation (20))

n =0,1,2, --- M‘-i (24)

(19) and (20) define a real matrix equation of size N where cir-
cular correlations of sizes given by different values of M are
computed. For example, when N = 16, equations (19} and (20) in
matrix form are given by

o] frooe o s s e e 0w s 8 s o o b —.:(n)—}
ﬁ.l(n) a1 0 0 ° [ L) . e ° ° ° ¢ ° L] ° M
S T T S L B B o
P PO T T S T R T e
a0 a0 0 M AL o o [ ° ° ° ° ° ° ° [ v Cie)
50 n oo e B LI U308 &1,18) B8 O o o o ° . s e
5] o n o o o MEID MLIG KILIE) B39 O ° ° ° o o [ b, (1)
B Y T T T e I B R B W
wor] Ble o 0 e ° LI KR DI B ° ° ° ° [ ° X
XY o 8 0 o ° . ° ° ° 1 ° ° ° o 0 ° ot}
(X5 LRI ° ] ° o ° @ ML BM o ° o ° e
B O T T T I e |
S O T T T RN CY
S O
ol oo o s e e e e e e e 0w 0 stan sty
] e ey
(25)
Using (2) and (3), (17) and (18) can be written as
N
h,{n) 1
a4 2
TR TN g, vz + 1 (26)
Ny i
-2 nk
hy(m) = o L qo(k)z(N } 27)
k=1
where
91(0) = x(0) (28)
91(g) = x(g) (29)
o Xk} + x(N-k) N
91(k) = 72 , k0, 2 {30)
o KLk - gx(N-k)
qo(k) 72 (31

Doing the same permutations as in the case of (15) and (16), (26) and
(27) become [3]

h, (2®a%nodN) Log N ¥,-1 n+k
——— L ¢ 1 gtdweldedT e o2
v(2 a modN) 1=0 k=0 2
log,N M,-1
27 "M n+k
h(Patmoam = & 1 1 gg2ldad) (33)
1=0 k=0 2

where M:’ n and n are as defined in (22), (23) and (24), and

M= el Pl (34)
2 2
= 1 P
5}

z(.) should be designed such that (26} and (27) (or (32) and (33))
represent 2 orthonormal transforms. Then (17) and (18) together also
represent an orthonormal transform since (28) thru (31) correspond to an
orthonormal matrix preprocessing the input data vector. There are 2 more
orthonormal transforms given by (19) and (20} since RDFT as a whole is
orthonormal.

In order to see how to proceed further, let (32) and (33) be written
with z(.) replaced by u(.). For N=16, one gets

¢ 111111111
hyt0} z2/2/2/2/2/2/2/2°°°°°°°}"1(°’W
1111 111121
hy(8) 120 ARRRR 000000058
11 -
n(4) Al 1110000000000 0@
11, 1T
hy(2) A4t o or=iT=TI0 0 0 0 0 0 olls@
o
11 - -
hy(10) AA-t oot 41 11000000 offsu0
121 oA 7o
ny(1) ,2/20111:111xlooooooo«;m)
1-1 4l | R !
hy(13) A3 o|_1_1l1 1-1 110000 0 0 offg 13
i I
1:1 111 -

By (9) Azl or1-1-1-1 1 11000 0 0 0 ofg,®
=1 o (35)
izt of | o 5)

ny(5) A7 ozl s 1o 0000 g

hy(4) 0000000000011 1t 1 [logg
h,(2) 000 00000 0 1 1 1T-T1-T jlg,2
o b o
1, (10) 000000000 1 1}-1 1{-1 1 |{at100
[ TR ER,

By (1) 00000000 WI=TT-T= T [|ggn

o ) bt )
1_ [y _

ho(13) oooooooosl11:1111 ERTED
f.

By(9) 000000 00 111 1 1-1 [lg9
1 |
| ] Ty

|1t [oco0 0000l izt [la®

The dotted lines indicate the circular correlations of sizes 2 and 4.
Let the corresponding circular matrices of size M be denoted by A(M)
for the real part and C(M) for the imaginary part. If A(2), C(2),
A(4), C(4) in (35) are multiplied by 1//2, the resulting total matrix
is orthonormal. Thus, they should be chosen to be

1-1
= P |
M2) = () = 72 [_1 1] (36)
1 1 -1 -1 1-1-1 1
1-1-1 1 -1 11
| (37) | (38)
AA) = by 1 S =5y 1 -
-1 11 11 -1 -1

The way (35) is orthonormalized is not unique. The columns or rows
of A{.) and C{.) can be permuted in any circular order without
affecting the orthonormality of the total matrix. A(4) and C(4) can
also be chosen as

0 1 0-1 1 0-10
0-10 0-1 0 1

40

A& =01 0 1 (39) c4)=]-1 010 (403
1010 01 0-1

Circular permutations of rows or columns are allowed in this case as
well. However, only the given orders will be considered.

The two possible ways of choosing A(M) and C(M) will be referred to as

case 1 and case II. In either case, they are circular and of the form

E -
p=|; g (41

E being skew-circular.

For N » 16, it is not difficult to show that the total matrix as inm
(35) is orthonormal if A(K) and C(M) are generated from A(4) and C(4)
by filling in <zeroes between the original elements and pultiplying

the original elements by /EJB in case I and /M]3 in case II such that
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the sum of the squares of the elements of each column or row equals H/2.

Let A(M) and C(M) be written as (aaoex1-~-aw4_1)M and (°0C1‘"°H/4—1)M'
The elements have the following values for the two cases:

M = 1: (both cases)
- = (42)
ay = ¢y = 1
M= 2: (both cases)
= - = = - . (43)
L T Tt T
M) 4
Case 1
30 Aq = gy = Ay =l e
a, =0 otherwise (43)
- - - - - - (46)
€07 Msa T "Cup2 = Camyq = i
c =0 otherwise “7n
Cage II
= - -
/4 T "l3my4 < 2 8
a =0 otherwise (49)
- - .| 50
S = Cu2 = 2 G0
C = 0 otherwise (51)
Comparing (32) and (33) with (35) thru (51) indicates that
z(ak/am) should assume the following values:
M < 2 (both cases)
20) = 2(h = 0 G2
zth= 1 (3
h PO N I (54)
@) =z = 73
M4
Case I:
X L0 | M/4| M/2| 3M/4 | otherwise (55)
2 ram) | mrs | -mm | -mys | -ms | o
Case II
X | 0| M2 ] otherwise (56)

za*ramy [ms2|-mp2] o
In computer computations, multiplications with powers of 2 are much
more simple than multiplications with powers of /2 since they are
simply shift operations. Except for A(2) and C(2), A(M) and C(M) can

be chosen fo contain powers of 2 only by choosing case I when 8 | M and
case IT when 8 /' M. This possibility can be called case III.

3. THE NEW BASIS FUNCTIONS

Since z(zlak/N) equals O for most k, as seen in (57)and (58),
finding the new basis functions b{m,N) becomes a relatively easy
task. However, the three cases have to be considered separately.

Case II is discussed below.

There are groups of basis functions related through equations
according to ba*, ), b(a* + L,1) for k = 0,1,---(w/8-1). For
each k, (7) yields

ba*, 1 « ba* + Exy = pak By 7

Using (4) and (56), one obtains

sinft ol = & (hak m) - pak 4 LN (58)

where 1 is defined by

1= (N/4-k) mod N/& (59)

The solution of (57)and (58) becomes

b(a¥, M) 1 1] [ bk g
1
=3 (60)
pa* « ¥y 1-1 | | & sin 24l

which is recursive. The values of b(1,4), b(1,8) and b(5,8) can be
shown to be 1,1 and 0, respectively, by comparing (8) and
(9) to (19) and (20).

4. DISCUSSION

The discrete orthogonal transforas which result from the development
in the previous sections will be discussed below under the code names
T‘, ‘1‘2, TJ, T‘ and Ts.

L

(15) defines an orthogonal transformation with a transformation matrix
which is circular.

The following correspondence will be defined:
bla¥,1) oo b((k - bimea &, L

Then T, can be written as

R-1
y(n) = [ x(k) b((n-k) mod N, N) (61)

=0

(74) is a circular convolution. It can be written in matrix form
as

Y = Bx (62)

where B is left-circular. As a consequence, it is similar to the DFT
matrix F:

B=F AF (63)

where A is the diagonal matrix of the eigenvalues of B [7]. Since B
is orthonormal, it follows that

Tt 64)

I being the identity matrix. According to the last equaticn, the eigen-
values are roots of unity. The eigenvectors are the columns of F.
B can be made right-circular according to

B' = pB (65)

where P is the permutation matrix corresponding to the interchange of
the rows of B according to m ++ N-n, n=1,2 --- (N-1), n being the row
index starting with 0. B' is symmetric in addition to being ortho-
normal. Hence, its eigenvectors are real and the eigenvalues are re-
stricted to * 1.




481 ‘\/

A New Family of Discrete Unitary Transforms and Their Potential

Applications

B can be written as the circulant (bn, b1, «-= b, ). Using (7} and

b(1,4) = 1, it is straightforward to show that

N-1

N-1
I b =1 (56)
x=0 ¥

.
Since B is orthonormal, it is also true that

-1 .
r o=t ' (67)
X=0

%

(17) and (18) make up the second transform. These equations are
analogous to (8) and (9), which detine ROFT, with z(3K + 1) ang
z(:k) replacing cosﬁ"nk and sin;"'nk, respectively. The inverse
transform can be similarly shown to be '

N N
x0 = 72 | h ovioz@E + D+ 10 s o2k (68
k=0 ' X=1

I

When x(kx) = x(N-k), hn(') is zero, and B () is given by (26).
This equation is orthonormal and thus defines the following
transfora:

" .
=2 ¢ nk , 1 (69)
vin) - /N kio x(k)vik)z(y® + )

This equation is analogous to the equation which defines DSCT, with
ok | 1 i
z( Nt 4) replacing co: N

The inverse transform is given by

)
am) = 72 ¢ ymovoozd® 4 ) 0
x=0

L

When x(k) = -x(N-k), k, (.) is zero, and h, (.) is given by (27),
which is orthonormal, defining the following transform:

. N
yin) = 72 & xCkyz (0K 1)
24 :

This equation is analogous to the equation which defines DST, with

2 (:k) replacing sinztl'nk.

The inverse transform is given by

N
R S | nk 2
x(n) = 7% k£1 Y z(g®) (72)

%

Orthonormalized DFT is given by [1]

“q B-1
yim = 7 r xo0 W an
k=0
where w equals ez'j/N. Let the transformation matrices of DFT and RDFT

be W and R, respectively. The two are related by [1]

V= W.R (74)

where the elements of the matrix W, are given by

] (75)
g0 ®

= i (76)
(v1)§'g 1 if N even

=1
(w1)n.n 2
1<n{ No a7
= w1)Non,n
R |
("1)11,}{ @m /2
1
148 S K, s
= Wy)yon, w0
- . (79)
“"1)-,11 [ otherwise

Let the transformation matrix of T, be R*. In analogy to DFT, it is
possidble to define

¥ o=V (80)
1

resylting in the transform given by

N-1
Bn) = 74 T x(Kz(-nk) (a1
k=0
with the inverse transform
N-1
. (82)
x(n} = 7 E h(k)zc(nk)
where
S S I | (83)
z (tm) = 2l + ) & izl
It is seen that Ty is similar to DFT with w replaced by zc(.).
The relationship between R and R* can be written as
(84)

R= BTR'

where By is the matrix corresponding to the direct sum of circular
correlations as defined by (19) and (20). It is not difficult

to show that v, and B, commute. As . b
. (85)
W= BTV1R
.+ which defines DFT, can now be written as
y(a) = L b(n N h(a,n aod K) (86)
m =1

This equation shows the relationship between DFT, T1 and T5.

since there are 3 possible ways to choose z(.) and b(.,N), the corre-
sponding transforms T1 thru 15 can be considered to be of the first,
second and ‘third kind, respectively.

The matrix elements of the transforms T2 thru TS5 are simple containing
0 and powers of /2 (odd powers suppressed in the third kind). In this
regard, they are similar to discrete orthogonal transforms with simple
elements [6]. Especially discrete Haar transform (DHT) has elements O
and powers of /2. However, there are notable differences. The discrete
orthogonal transforms like DHT are defined by an equation of the form

y(n) = € x(K)f(n, §) (87

which means that for each n, there is a different waveform to be
sanpled. This can be compared to the equations defining T2 thru TS
where only a single waveform z(.) is sampled as in the case of dis-
crete trigonometric transforms.

As a comparison, the matrices correspending to T2 and DHT for N=8 are
shown below:
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T 7. CONCLUSIONS
2
4 1 4 1 4 1 4 17 In this article, the representation of RDFT in terms of new basis
f2 02 f2 072 72 72 72 2 functions leading to 2 matrices of factorization is further gene-
ottt 0 ralized with the requirement that the matrices be orthonormal. This
! 0 -1 0 ! 0 -1 0 procedure resulted in new discrete orthogonal transforms with in-
(prr et -t teresting properties. The first transform, T,, is a circulaz convo-
L I S s s - i Qe lution. The other transforms, T, T., T and T are analogous to RDTF,
f2 02 f2 72 /2 002 J2 72 PEARY)
[V | 1 1 0 -1 -1 -1 DSCT, DST and DFT with the replacement of 5m2_gk and <:<>slz§k by
o 1 0 -1 0 1t 0 -1 z(nx) and z(“k i‘), respectively.
L © 1 -1 1 o -1 1 -1
Another way to interpret the results is that, if the input data is in
terms of the basis vectors given by the columns of the Tz matrix, and
DHT the output frequency components are in terms of the standard basis
vectors, RDFT reduces to the direct sum of 1, 's.
LIS T T D A
5 i i § o~ -1 =i -f Since z(.) has simple values, Tz thru Ts can be expected to be useful
/72 /2-72-72 0 0 0 © in a number of applications such as real-time signal and image pro-
% 0 0 0 O /2 {2-72-02 cessing, pattern recognition and artificial intelligence. One ad-
2 -2 0 06 0 0 0 0O vantage they have in comparison to similar transforms such as DHT is
6 0 0 0 2 -2 0 0 that the results can be converted to Fourier spectral information, if
O 0 0 0 0 0 2 -2 desired, by further processing with direct sum of T1's, which are of
sizes N/4, N/8 ---~- 2, N being the size of the initial vector space.
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One important advantage of factorizing RDFT and DFT in the
form described above can be that transforms of type T2 can
firsc be used for coarse processing of data, for example,
in signal detection or classificacion. Further processing
in the form of Fourier spectral components can be done,
only if need be, by use of T1.



