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RESUME

Lorsqu‘un filtre digital & point fixe est exécuté par cascade des sections de
deuxidme ordre sous contraintes de plage dynamique, le bruit d’arrondissage
résultant causé par la longueur de mot finie dépend beacoup du pairage de zéro de
pole et de I'ordre des sections. Deux procédures principales d’optimisation pour
la réduction du bruit d’arrondissage sont disponibles, 3 savoir la procgdure de
programmation dynamique et celle heuristique. La procédure heuristique est plus
pratique que celle de programmation dynamigue, car sa durde de caleul est nette-
ment plus courte et une solution presque optimale peut s'obtenir. C'est un grand
avantage pour la procédure heuristique de présenter un critére pouvant juger sila
solution presque optimale est acceptable. Pour la premigre fois, nous avons’
introduit un tel critére sous forme d’une formule d’estimation. Cette formule
présénte une limite inférieure de variation la plus importante possible du bruit
d’arrondissage de sortie, et 'estimation peut 8tré obtenue 3 partir de cette formule
3 travers un simple caleul. Nous avons &tudié dans ce document fa différence
entre I'estimation et la solution exacte pour tous genres de filtres avec calculs
d'ordinateur.

Les estimations peuvent étré calculées immédiatement et sont proches des
solutions exactes correspondantes avec des différences de moins de 1,6 dB. Nous
sommes convaincus que cette formule est trds avantagause pour n‘importe quelle
procédure heuristique ayant des difficultés d trouver la solution exacte.

SUMMARY

When a fixed-point digital filter is realized by cascading second-order sections
under dynamic range constraints, the resulting roundoff noise due to the finite
word-length is highly dependent on the pole-zero pairing and ordering of the
sections, There are two main optimization procedures for the minimization of the
roundoff noise, that is, dynamic programming and heuristic procedures. The
heuristic procedure is much more practical than the dynamic programming proce-
dure because of requiring a considerably smaller computing time and gives a near
optimal solution, It is very beneficial for the heuristic procedure to have a criteri-
on which judges if the near optimal solution is tolerable. We have introduced, for
the first time, such a criterion in the form of an estimation formula. The formula
presents the greatest possible lower bound of the variance of the output roundoff
noise and the estimate can be obtained from the formula with a simple calcula-
tion. In this paper, the difference between the estimate and the exact solution is
investigated for all kinds of filters with computer calculations.

The estimates are readily computable and very close to the corresponding
exact solutions with the differences of less than 1.5 dB. It has been convinced
that the formula is very advantageous for any heuristic procedure which can
scarcely find the exact sojution.
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INTRODUCTION

This paper discusses the validity and usefulness of an entirely new estimation
formula in the literature [1]. The formula can evaluate a near optimal solution of
minimization problem for the roundoff noise in the cascade fixed-point digital
filters.

When a fixed-point digital filter is realized by cascading second-order sections
under dynamic range constraints, the resulting roundoff noise due to the finite
word-length is highly dependent on the pole-zero pairing and ordering of the
sections. Hence, the analysis and minimization of the output roundoff noise from
“the cascade fixed-point digital filters have been the subject of various papers [1]-
{71.

There are two main optimization procedures for the minimization problem :
dynamic programming procedure {2], [3] and heuristic procedure [1], [4] —~{7].
The optimization procedure using the principle of dynamic programming pro-
duces the exact optimal solution. However, the computation time required
becomes prohibitive, even when a moderate number of second-order sections are
involved. So, the dynamic programming procedure is impractical. On the other
hand, the heuristic procedure is much more practical than the dynamic program-
ming procedure because of requiring a considerably smaller computing time and
gives a near optimal solution. It cannot, however, be known how close the near
optimal solution is to the exact one. Hence, it is very beneficial for the heuristic
procedure to have a criterion which judges if the near optimal solution is tolerable.
We have introduced, for the first time, such a criterion in the form of an estima-
tion formula [1]. The formula presents the greatest possible lower bound of the
variance of the output roundoff noise and the estimate can be obtained from the
formula with a simple calculation. In [1], we did not discuss the validity of the
formula in detail.

In this paper, the difference between the estimate and the exact solution is
investigated for all kinds of filters with computer calculations.

ESTIMATION FORMULA OF THE LEAST ROUNDOFF NOISE

Let the given transfer function be
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which is realized in the cascade form with the proper scalings [4]. The two most
commonly employed configurations for the cascade form are of the 1D and 2D
forms shown in Figs. 1(a) and 1{b}, respectively. The noise flow graphs of the
cascade 1D and 2D forms are obtained from Figs. 1(a) and 1(b), as shown in Figs.
2(a) and 2(b), respectively. e,-'(n)(/'=1~L+1) in the Figure are the noises generated
due to product quantizations in the second-order sections, and the small circles
and the solid dots represent summation nodes and branch nodes, respectively.
The scaling factors é,- (7= 1~L) are readily determined by imposing the dynamic
range constraints at branch podes in the cascade 1D form as follows :
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where || « ||, denotes the L, norm, defined for an arbitrary periodic function X(-)
with period wg by .

= _1___ @s L 4
XMy = | —fo™ Kl [ des (3
$

for each real p 2 1. o () & o ("79), B, () 2 Br1e”“T™) ang Ty (=2n/es)
is the sampling period. The values of p are fixed to be 2 and oo for random and
deterministic inputs, respectively.

We shall present the estimation formula of the least output roundoff niose
from a digital filter in the cascade form. Referring to Fig. 2, the variance of the
output roundoff noise e{n} from a digital filter in tha cascade 1D form is given by
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while for the cascade 2D form
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a3 is the variance of the noise from each rounding operation and kjis the number

of noise sources inputting to the /-th summation node.
' A discussion of the estimation of the least roundoff noise will be presented
on the basis of (4) and (5).

Halder's inequality has the following relation forp, g 2 1:
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where f{« } € Ly (0, wg) and g (+ )elp (0, wgl.
Applying the Halder's inequality (6) to (5), we have the following relaitons for
random inputs (p = 2):
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When p = ©0,0n the other hand, the left hand side of (6) becomes
Ml Il glly = max [ fwdl gl = (Imax |f(w}|-g Il
0% wiw,
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Using the inequality (8}, the following relations are obtained from (5) for deter-
ministic inputs { p = o)
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From (4), (7) and (9), one can obtain the following inequality:
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and k741 = 1 for the 2D form. In the above, g means the minimum value of

the argument for all possible orderings of 85 and then I is uniquely determined.

1t follows from Eq. (10} that the value of [ presents the greatest possible
lower bound of the variance of the output roundoff noise normalized by Op. In
other words, the exact solution equals to I;or lies between the near optimal solu-
tion and 7. So we call Eq. {11} an estimation formula, in which the estimate[}-
shows how far the near optimal solution is away from the exact one at most.
According to Eq. {11), it is also known that 1'; can be readily obtained with a
simple calculation.

A similar estimation formula can be introduced for FIR digital filters.

COMPUTER IMPLEMENTATIONS

Computer calculations have been made to investigate the validity and useful-
ness of the estimate I;. In this paper, we illustrate, for simplicity, the difference
between the estimate I'1and the exact solution for the cascade 1D form with L,
scaling. Sample filters in use are all kinds of elliptic filters of 6th to 12th orders. .
The estimate [ and the exact solution are tabulated in Table 1. The result for
highpass filter is equal to that for lowpass filter and is ignored from the Table.

It is known from the Table that all of the estimates are so close to the
corresponding exact solutions that the differences between them are less than 1.5
dB. Similar results will be obtained for the cascade 1D form with L . scaling and
the cascade 2D form,

CONCLUSION

We have investigated the validity and usefulness of the estimation formula of
the least roundoff noise for the cascade fixed-point digital filters. The estimates
are readily computable and very close to the corresponding exact solutions with
the differences of less than 1.5 dB.

It has been convinced that the formula is very advantageous for any heuristic
procedure which can scarcely find the exact solution.
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Configurations for the cascade form.

{a) 1D form. (b) 2D form.
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‘Noise flow graphs of the cascade form.

{a) 1D form. {b) 2D form.
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TABLE I
Results for the 1D Form with L, Scaling {Unit in dB)
Lowpass Filter Bandpass Filter Bandstop Filter
Filter's
Order ESﬁIr::ate Sflﬁifsn Difference Esti]rﬁr:ate S()E|)I(J:$Otn Difference Est[ijr:'\ate SEI):J at(i:ctm Difference
6 11.12 11.85 0.43 10.23 11.29 1.06 12.48 13.96 1.48
8 13.08 13.75 0.67 11.75 13.06 1.31 14.31 15.63 1.32
9 13.14 14.02 0.88 —_ — — — — —_—
10 17.44 18.06 0.62 10.78 11.66 0.88 13.84 14,52 0.68
1 17.28 18.19 0.90 — — —_— —_— -—_ —_
12 18.98 19.67 0.69 11.76 12.74 0.98 14.84 16.56 0.72




