DIXIEME COLLOQUE SUR LE TRAITEMENT DU

SIGNAL ET SES APPLICATIONS

NICE du 20 au 24 MAI 1985

STATISTICAL ANALYSIS AND IMPLEMENTATION OF SINGULAR VALUE PREPROCESSORS

Leon H.

Sibul

APPLIED RESEARCH LABORATORY, The Pennsylvania State Univeristy
P. 0. Box 30, State College, PA 16804 USA

RESUME

Afin d'eviter d'importantes erreurs numeri-
ques ou une convergence trop lente des algorithmes
iteratifs, les processeurs pour antennes adap-—
tatives doivent corriger le mauvais conditionne~
ment qui apparait frequemment en pratique. Cela
peut etre realisée a l'aide d'un preprocesseur a
vecteur singulier ou a vecteur propre, qui trans-
forme le vecteur en sortie de l'antenne en un
vecteur de dimension plus faible. Ces transfor-
mations changent les processeurs adaptatifs mal
condltiennes en processeurs bien conditionnés et
reduisent la dimension du processeur pour anten-
nes a la dimension optimale nécessaire pour
exploiter le nombre de sources directionnelles
distinctes qui composent l'antenne. D'autre part,
cette methode basée sur la decompos1tion en valeuer
singulieére (SVD) permet d'identifier le nombre de
sources. -I1 y a cependant deux difficulfes dans
l’1mplementation de ces techniques: le manque de
méthodes valables du point de vue statistique pour
mettre une limite inferieure aux valeurs
singulieres et limiter la complexité des calculs
sur ordinateur.

Dans la pratique, pour utiliser la technique
de pretraitement d'un vecteur singulier on d'un

vecteur propre, ie faut appliquer ces décompositons

a des matrices de covariance estimees. Par
conséquence, les valeurs singuliéres (propres) et
les vecteurs singuliers (propres) sont des valeurs
aleatoires et il faut analyser les erreurs de
probabilete de ces guantités. Dans cet article, de
simples limites superieures pour les erreurs au
moindre carre des valeurs propres estlmees

et des vecteurs propres sont derivees. Ces limites
superieures peuvent facilement étre calculées par
la matrice de covariance des erreurs d'estlmation.
Nous nous sommes servis de ces limites superleures
pour analyser les performances des formeurs de
faisceaux qui utilisent les preprocesseurs de
vecteurs propres.

Une autre difficulte dans l application de la
decomposition en valeur singuliere (SVD) au
traitement du signal en temps réel est sa
complexite sur ordinateur. Cette dlfficulte peut
étre aplanie si des structures spec1alisees de
technique d'integration sur une large échelle
(VLSI) sont utilisees pour la décomposition en
valeur 51nguliere. L'idee essentielle de
1'imp1ementation de l'integration a large échelle
de 1la decomposition a valeur 51ngu11ere et a valeur
propre est basée sur le fait que ces décompositions
peuvent etre effectuees grace a des rotations,
dans le plan, de sequences adequates.

SUMMARY

To avoid large numerical errors or slow con-—
vergence of iterative algorithms, adaptive array
processors must correct ill-conditioning that can
frequently arise in practice. This can be accom-
plished by a singular vector or an eigenvector pre-
processor which transforms the array output vector
to a lower dimensional vector. The transformations
transform the ill-conditioned adaptive processors
into well-conditioned processors, and reduce the
array processor's dimensionality to optimum
dimensionality needed to process the number of
distinct dimensionality to optimum dimensionality
needed to process the number of distinct direc—
tional sources that impinge on the array. As a by-
product, this SVD-based processing technique iden-—
tifies the number of sources. There are two diffi-
culties in implementation of these techniques:
lack of statistically valid methods for threshold-
ing singular values and computational complexity.

To use either a singular vector or an eigen-
vector preprocessing technique in practice, one
must apply these decompositions to estimated
covariance matrices. Therefore, the singular
(eigen) values and singular (eigen) vectors are
random variables and one needs to perform probabi-
listic error anmalyses of these quantities. In this
paper we derive simple upper bounds for the mean
square errors of estimated eigenvalues and vectors.
These upper bounds can be easily calculated from
the covariance matrix estimation errors. We have
used these upper-bound expressions to amalyze the
performance of adaptive beamformers which use
eigenvector preprocessors.

Another difficulty in application of SVD to
real-time signal processing is its computational
complexity. This difficulty can be overcome if
specialized VLSI structures are used for SVD. The
essential idea for the VLSI implementation of
singular value and eigenvalue decomposition is
based on the observation that these decompositions
can be achieved by appropriate sequences of planar
rotations.
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INTRODUCTION

In many signal processing applications such as
linear prediction, maximum likelihood estimation
and adaptive beamforming require inversion of an
estimated covariance matrix which may be
ill-conditioned.[1,2,12] This can cause large
numerical errors or slow convergence of adaptive
algorithms. To avoid these problems, adaptive
signal processors can use either singular vector or
eigenvector preprocessors. Singular vector
preprocessors have more general applications than
eigenvector preprocessors, but in adaptive
beamforming application it is sufficient to
consider eigenvector preprocessors since the array
output covariance matrices are Hermitian. This
avoids some extraneous complications. With some
additional complications the results of this paper
can be extended to the singular value
decomposition. Eigenvector preprocessor U
transforms an array output vector x to a lower
dimensional vector y:

1=H§5 (1

where Uy is the submatrix of eigenvectors which
correspond to the r largest eigenvalues of the
array output covariance matrix T. The
covariance matrix [ is given by

I = E{x(1) ¥ (D)} . (2)

where subscript H denotes Hermitian transpose, E{ }
expected value and x(i) is the array output vector.
The vector x(i) is a vector of random variables
with components

x (i) =
m

; sj(ti - de) + nm(i) . (3)

D~

1

where s; is the signal due to the j-th source, Ty;
is the propagation delay of the directional signa
from sensor to sensor, and np(i) is the seunsor
noise which is uncorrelated from the directional
sources. [1 Both the noise terms and the
directional signal terms are zero mean stochastic
processes.

The array output covariance matrix is
decomposed

r=uaut (4)

where A is a diagonal matrix of non—negative
eigenvalues of T, and U is a matrix whose columns
are the eigenvectors of T. Optimum array
weights can be determined from this decomposi-
tion. [l In practice one must determine the eigen-
decomposition and the optimum array weights from an
estimated covariance matrix T which is a sum of

the true covariance matrix I and estimation error
eh.

In this paper, we determine expressions for
the means and variances of the eigenvectors and
eigenvalues of I', and to find an expression for
the increase of mean square error caused by random
errors in computing the eigenvalue matrix inverse.
We consider the primary source of errors to be the
noisy estimates of the array output covariance
matrix. In this paper true or unperturbed
covariances, eigenvectors, eigenvalues and array
welghts are considered deterministic quantities and

the corresponding erroc terms or perturbed
quantities are random variables. The analysis is
restricted to small perturbatioa.

ESTIMATED COVARTANCE MATRIX

The output of an adaptive beamformer can he
expressed in matrix form as

Aw=b (5)

where A is a k x m data matrix, w is m x 1 weight
vector and b is k x 1 desired signal vector. k
denotes the number of data samples and m the number
of sensors.l! These equations are overspecified
and inconsistent and only have a solution in the
least squares sense.[4] That is, the optimum array
weights are the weights that minimize iA w -bij.
Usually the number of sensors is very much smaller
than the number of data samples k. In this case
the least squares solution can be expressed ia
terms of generalized inverse éf

w=A"D (6
where
At = (aHay-1 aH | (7)

We observe that

k .
L R CP R CO I IR €D
i=]1
and
H k -
A = L ) R S KR ()
i=1 ==

where x(1) is the data vector at time i, I is the
estimated covariance matrix and Bb « is the

estimated cross—covariance vector. The estimated
covariance matrix ' is an unbiased estimate of
covariance matrix I', that is

Elx(i) xP()) = . (10)
1

=
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We will use this property in the next section.

ERROR ANALYSIS OF EIGENVALUE ESTIMATES

In adaptive beamformers estimated eigenvalues
are used for two fuunctions: to determine the
number of spatially compact stroug sources and to
compute optimum array weighting coefficients. The
first function is mathematically equivalent to the
determination of a set of distinct eigenvalues of
which exceed the eigenvalues due to omnidirectional
background noise. 1In both applications, the
estimated covariance matrix [ is decomposed as
follows

n

H

i

ik (11)

|CI>

P=T+es=

where T is the true covariance matrix, €& is the
error in estimated covariance matrix, i and U

are the estimated matrices of eigenvalues and
eigenvectors, and € is a perturbatiou parameter.
The eigenvalue/eigenvector decomposition of the

true covariance matrix is given by
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fey

Loyt (12)
e eigenvalues and eigenvectors (columns of matrix
L), satisfy the equation

.

Swe = o ug k=1, «oomo. (13.a)

Sk ue k

Iy eve m & (13.b)

We follow a perturbation analysis that Kammler has
used to compute errors in singular vectors that
have been computed with singular value
decomposition (SVD).1%] We use this approach to
compute perturbations in eigenvalues and
eigenvectors. Following Kammler, we write

le) = e + Gopp vl +oeee + alp up) €

+ (21 ulp + ...+ oudy Em) 2 +
LA
(14)
and
(e = he+ Mge + ke (15)

Substituting Eq. (l4) and (15) into HEq. (13.b) we

have:

(7 + =) lug + clogqu] + eoo apguy) + 82(“2131 eee)
+oeed] = O + exgp + €29 + ..0)
lug + elipquy + oee + ajqupy) + 52(u2151 + oee. +
S2mMp) ¥ oeel) (16)

Performing the indicated multiplication aand
equating equal powers of € we have

02w = A (7)
ebe 8w + T(upqul + ove + aqug)

= Meluk o Ak(ulgul toeee +oulgup)  (18)
e aluppuy + eee wqup) + I(agqup + eee + oapup)

= Ae2uk * o Aki(apiul toees + ouguy)

+ Ap(ugiu] + oeee + azpug) . (19

We premultiply Eq (18) by E:’ then by
orthogonality of eigenvectors, that is

g ,
By = by (20)

and Eq (13) we have an expression for first
perturbation term of the eigenvalue

H
A, = 4 . :
SIS L

The expectation of Xyg) is

. e s . Hog =
E{A ] = Y E{s} u, 0 (22)

because we showed that Eq (l0) is an unbiased
estimator of I'. The variance of Xk is

o H
var A= u E{a

H

} (23)

jc

u

The coefficients a., can be obtained by
premultiplying eq %}8) by BE and then using
eq (13) and (20)
H
4 =T (g_i A_gk)/(ki Ak) . (24)
i# k.

The @)y coefficient can be computed from the
normalization coundition of Bk(e):[6]

2 I 2, .2
nEk(c)uz = 1(l + ulks) U + € igl o Luy + 0(e )|l2
= 1+2a ¢+ 0(ed) =1 (25)
- 1k ’
therefore
ajk = 0 (26)

Hence, the first order perturbation of eigenvectors
of T due to the perturbation by €A is given by

B (e) = +oelogquy Foeee o)
n H
ST e L a0y R
=y - e (27)

where vector ¢ is defined by the sum that follows
¢, This equation clearly shows that an eigenvalue
which is close to eigenvalue Ay causes serious
instability in determination of the eigenvector
u(e).  Since E{A} = 0, E{u(e)} = uk, i.e., uk(e)
is an unbiased estimator of uyx. A measure of error
in u(e) is

B{iy (e) - g 13} = ¢ B(ce) . (28)

Computation of higher order perturbation of
eigenvalues and eigenvectors is messy, it is
therefore instructive to examine these errors in
the light of some well-known error bounds. Weyl's
inequality for the eigenvalues of m x m Hermitian
matrices is

MDD+ A8 € AL+ ) € (D) + (D)
k=1, 2, esu m (29)
where Aj(A) is the largest eigenvalue of A 17,81

Bounds for expected eigenvalues (4 is a random
matrix and T is a deterministic matrix) are

A(T) + E{N(8)} < E{xk(£+g)} < N(D) + E{0(8))
(30)
Since
E{p(} 20
(D) € EM (T + D)} < N(D) + E{3(a)}. (31)

These are interesting error bounds, unfortu-
unately it is difficult to compute E{Aj(4)}.

A bound of mean square error of the eigenvalue
estimate can be computed using inequalities (29)
and (30) :
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E{IM (T + ) = M(D)12}

2 2
EOy (D +8) = 20 (0 + mAD + A (D}

2 2
<20 (D + 2 (D EO W) + ER] (0}

20, (D) EQ (T + &)

]

2, (D (B W} - EOW}) + 502 () (32)

If the expectations of the eigenvalues of the error
matrix are equal, the mean square error bound
becomes:

E(D (X + ) - A (D17 <202 (o)) (33)

EXCESS MEAN SQUARE ERROR

The weight vector which minimizes the mean
square error is given by

-1
5o T A-ro Rby ’ (34)
and the corresponding mean square error is

_ 2'_ H -1
Emin = |v] Byp i\'ro Byb ‘ (3%

When the actual weight vector w deviates from the

optimum weight vector w,, the actual mean square
error is

= H =
= E;m:i.n * E{Eﬁ EZ.X.EE} - gmin * Ee (36)

where
Weg =W ~¥Wo . (37)

The last term in E? (36), &g, is called the excess
mean square error. 9] In this section we are
particularly interested in computing the excess
mean square error y?ich is caused by errors in
determination of A . To avoid extraneous
complications, due to effects of which are of

no direct interest in this section, we assume that
be = Rby' With this assumption and by use of

results from Appendix A, the we have an
expression for the error in the weight vector

IS B
¥ = (Ar Aro) gbz
T S YR
~ro ~ro —r€ —ro —ro” —by
! -1
= Ao A L —by (38)
and the excess mean square error
_ H _ H
Ee = E{w€ Ryy we} = E{w8 Aro we}
= a7t eZy A% e (39)

—¥b —ro ~ —re’ —ro —yb

where terms in the matrix E{A2 } can be computed by
Eq (23). This is the desirearexpression for the
excess mean square error. It is important to
observe that small eigenvalues of A, result in
large contributions to excess mean square error.

Therefore, one must preprocess the data to avoid
inverting an ill-conditioned matrix.

IMPLEMENTATION OF SINGULAR VALUE
AND EIGENVALUE DECOMPOSITION

Computation of singular value and eigenvalue
decompositions is computationally very intensive.
However, methods exist which allow design of
specialized VLSI structures for singular value
decomposition. The essential idea is based on the
observation that the SVD can be achieved by an
appropriate sequence of planar rotations in an
appropriate coordinate system. This sequence of
rotations converges to the diagonal matrix of
singular values. SVD 1s obtained in the process.
This method is a generalization of the method
originally used by Jacobi to show that the eigen-
values of a real symmetric wmatrix are real. The
basic operation in Jacobi-like algorithms is the
planar coordinate rotation. Coordinate rotations
in either circular, linear or hyperbolic coordinate
systems can be effected by the CORDIC algorithm or
its generalizations. The CORDIC algorithm can be
efficiently implemented in fast VLSI structures
using only shifts, adds, and local memory. Hence,
special computational cells can implement the basic
coordinate rotations required for SVD and eigen-
value decomposition. These computational cells can
be used in either parallel or pipelined VLSI
structures. Details of this method are discussed
in a paper by Sibul and Fogelsanger.

CONCLUSIONS

We have shown that eigenvalue estimates are
unbiased if they are determined from an unbiased
estimate of the covariance matrix. A perturbation
analysis shows that closely spaced eigenvalues can
cause serious errors in determination of eigen-
vectors. This point needs careful consideration in
design of systems which require accurate knowledge
of eigenvectors. An expression for excess mean
square error shows that small eigenvalues of the
preprocessed covariance matrix result in large
contributions to the excess mean square errors
This further emphasizes need for careful pre—
processing of signals that have ill-conditional
covariance matrices.

For simplicity we have analyzed processors
which are based on the eigenvector decomposition.
Results can be extended to the processor which are
based on the singular value decomposition (SVD).
Error analysis which is not restricted to the small
perturbations needs to be done. . Development of
statistical methods for thresholding singular
values and eigenvalues is in progress.
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APPENDIX A

In this appendix we obtain an approximate

expression for A;l. Using the classical approxi-
mation for an inverse operator[10]

-1 _ -1 _ -1 -1
A= (Aro tAD) = (T +A A A
S R -1 -1,2
B i\»m a L. Aro + (Are i\-ro) SEPAL
(A-1)

This expansion converges in the mean square sense
. -1 2
E41l . -
{AEA0!I2}<1 (a~2)

This condition must also be satisfied to ensure
that the excess mean square error is kept small.



