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RESUME

Ce travail est une introduction & la théorie
des systémes spatiales stochastigues,
inspirée par la méthode des équations inté-

grales stochastigues.
La technique employée a Bté developpée
par ¥.C. LIU pour analyser la propagation

des ondes acoustigues sous-marines.

Nous commengons avec une section présentant

les définitions et les notatiaons nécessaires.

Erisuite le probléme de la propagation des

ondes dans un milieu aléatoire est consideré.

Enfin nous etudions le cas de la propagation
des ondes radiocklectriques par diffusion

provenant de la troposphere.

SUMMARY

This paper is an introduction to the theory
of spatial stochastic systems, and the
approach used is inspilred by the methad of

stochastic integral equations.

The technique used has been developed by
¥K.C. LIU to analyse wave propagation

problems in underwater acoustics.

We start with some definitions and notations
and then we consider the problem of wave

prepagation in @ random medium.

Finally we extend some previous results to:
the case of troposcatter propagation of

radio waves.
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1. INTRCDUCTION

Signals transmitted through a random commu-
nication channel and signals scattered back
as target echoes and reverberation from
volume and boundaries suffer random varia-
tions in time and space. The transmitting
medium including its random boundaries can
be characterized as a linear time and space

variant random filter.

Wave propagation in & random medium may be
described with the aid of linear spatial
stochastic systems theory. The relation bet-
ween source excltation and resulting field
may be expressed using a stochastic system

operator.

A spatial stochastic system may be resolved
into suitable subsystems to decompose a
complex physical process into several

simpler processes.

This method has been developed by K.C. LIU
1] to analyse wave propagation praoblems
in underwater acoustics. The technigue can
be applied as well to optical and electro-
magnetic problems as for example tropos-

catter propagation of radio waves.

2. DEFINITIONS

A linear spatial stochastic system aperator
describes a stochastic linear transformation
of a random input scurce excitation function

s into a rariom output field function f.
F(y, 6 = ofs(x, 0 . 1)

The source excitation function s is a func-
tion of a vector x € R and a stochastic
ensemble parameter & from the space of ele-
mentary events. The resulting field function
f is a function of a vector ; ¢ R™ ang .
Linearity is equivalent to the validity of
the superposition principle which implies
the independent propagation of waves. The
dimensions n of the vector x and m of the
vector ; may vary from ane to four, with one
ti-e diwensian and zero, one, tws or three

obysical sopace divensions,

m

svz2llgr +temzn - t

~e” the system

operator omega is called compressive, if m is
larger than n, then omega is called exten-
zive and if m is egual to n then omega is

called homospatial.

If one defines in the case of & linear re-
ceiving array the incident wave as input
sgurce function s and the electrical output
af the array as output field function f then
the system operator will be compressive with

n=4 and m=1.

If one defines in the case of ambient noise
caused by the sea surface the random noise
source caused by the sea waves as input
source functions s and the resulting noise
field as output field function f then the
system operator will be extensive with n=3
and m=4. If one defines in the case of random
valume scattering the incident wave as input
source function s and the scattered wavefield
as gutput field function f then the spatial
stochastic system operator will be homo-

spatial and n=m=4.

3. SPATIAL STOCHASTIC SYSTEM FUNCTIONS

The stochastic field caused by a Dirac delta
function in the n-dimensional source space
is called the unit impulse response function

of the stochastic system.

- -

9ly,x_, ) = O{&(;-;D)} } (2)

Using the sifting property of the Dirac
delta function we can decompose an arbitrary
source function s into a linear combination
of weighted and displaced delta functions.
> ey L el o .
s(x, €) /S(xD,E)F(x xD)de . (3)

Rn

To find the resulting field function f of an
arbitrary source functions s we substitute

(3) inta (1)

F(y,8) = of s(xD,§>é<x-xU)de}. %)
n
R
Regarding s(;D,E) as a weighting factor
applied to the elementary function &(x—;u)
we can use the linearity property of the
stochastic system operator to allow omega to

gperate on the individual elementary func-
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tions. Thus we get
£y, 0= 1 sx,0afs-x D}dx, - (5)
mn

R
As a final step we use the definition of
the impulse response function given in

equation (2) and we get the superposition

integral

P, 0=/ s(X, D)oy, xg, Odxy - (B)
R

The transfer function of the stochastic
system is given as a n-dimensional Fourier-
transform of the impulse response functiaon

into the wave number space.

The second grder moments may be calculated
as the mathematical expectations with re-
spect to the stochastic ensemble para-
meter €. There exists a Fourier-relationship
between the second order moments of the im-
pulse response function and of the transfer
function similar to the Wiener-Khinchin or

to the Van Zittert-Zernicke theorem.

In many cases second order moment theory is
only used for convenience. To give a
complete description one should know the
multidimensional probability distributions

of the random field functions.

L. STOCHASTIC INTEGRAL EQUATIONS

“.C. LIU proposed a method to determine the

transfer functions of complex spatial
stochastic systems by resolving them into
several simpler systems {43. If impulse
responses ortransfer functions of the simp-
ler physical processes that correspond to
these basic systems are known from theory or
measurements then the calculation of the
complex process can be transformed to the
problem of solving stochastic integral

eqguations.

Thus the problem of solving partial differ-
ential equations witn randomly moving and
rough boundaries may be transformed into a
problem of solving integral eguations.There
are four types of basic connections. The

first type is a parallel network of spatial

stochastic systems. Their unit impulse res-
ponse functions add up to form a total im-

pulse response.

P

9.(y,%,8) (7)

GT(y,x,§) = j

3=

The second type is a cascade connection of
homospatial subsystems. The unit impulse

response aof the total system 1s given by re-
peated convolution of the individual impulse

respones of the subsystems:
X %X ,E) =
GT(xn,xD,.)

.. .ox . (8)

3
» Edxy n-1

n
= /... [ (x L, %
i R RN ek

n- -1

The third type of basic connections is a
homospatial self-feedback system.§. One gets,
F the feed-
the feed-back operator, the

with I, the identity operator, V¥

forward and YB
+inon

narat+mnn 3
cerator eguatl

0

0 = (1-v_v ) 'y . (9)

The fourth type is a mutual feedback connec-
tion. Such a system is a network model for
multiple scattering between two boundaries,
a problem which is related to acoustic wave
propagation in shallow water. With @1 the
spatial stochastic operator for the surface
and ¢

2
the bottom and I the identity operator, we

the spatial stochastic operator for

get far the total operator the mutual feed-

back operator eguatiaon

0 (I—m1¢2>_1(¢1+¢1¢2) *

(10)
-1
+ (T-0,0,07 (b,+0,0,)

with @1 and wz the impulse responses of the
systems ¢1 and @, and s(x) the source
excitation function wé get for the resulting

field function f(x)

PO = £,G0 + £ 00 (1)
wuhere £,(x) and FZ(Q) satisfy the following
stochastic nonhomogeneous FREDHOLM integral
equations of the second kind:
FL(x) - a.(x) =
J J (12)
B - -, S
= /Yi(X,X )Fj(x Ydx
i=1,2
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with the abbreviations

l"] 2(;”—;',;")[‘;{’"

:f”w(x—x”,x)@

13)
\{Zz’.wz(;—;"’;)q‘j(;"—;I ’;n)d;n
u.(;) =
J
- /s(§>ij<§-§',§>+yj<§,2'>3d2' C16)

Jj=1,2

5. RANDOM COMMUNICATION CHANNEL MODEL

If the propagation is established by single
scattering fram a large number of indepen-
dent elements the WS55US (wide sense station-
ary uncorrelated scattering) channel model
can be applied. The scattering function
L(u, V) gives the distribution of the elemen-
ta-y point scatters or blobs in DOPPLER-shift
# and time delay v. The WOODWARD ambiguity-
function is the crosscorrelation function of
the transmitted complex signal x(t) with the
received echao, that has suffered DOPPLER

spread p and time delay .

(X ;2F=‘Lt
x (e, V) =/ x*(t)-x(t+v)e* dt
-
(15)
v 2nfy

= X (F)-X(Feuded  df

The output of the random channel can be des-
cribed as the two-dimensiocnal convolution of
the input and the scattering functiaon of the
channel .2,31:

12
i

Cheg G120 20 g Compyr -0 [PL G v auay - (18)

This relatian may be generalized to include
angular spread u and v _4]. The variables

u and v are defined as the wavenumer com-
ponents in the angular space

u= % ; Vo= £ 17>

A
A denotes the wave length and @« and B are
the direction cosines of the wavenumber
vector E with respect to the x and y axis.
We get the generélized input ambiguity-
function as the produzt of the power direct-
ivity function }x(u,v)i2 of an array and the
input signal ambiguity-function [x(u,v)[z.
The fourdimensional output ambiguity-func-
tion of the random WSSUS-channel is obtained
fram convolution with the fourdimensional

scattering function

SECIERTRVP

= /f//IXi(@‘“:T—V,U—W,V-Y)[2' (18)

« LG, v,n,¥)dudvdndy

It gives the angular spread and the disper-
sion in time and freguency caused by the
random medium. The Fourier-transform of the
scattering function yields the fourdimensiaon-
al correlation function of the transfer func-

tion of the medium:

CH* (6, F %, y) cH{b+AL, F+AF, x+0x, y+ly )/ =

R (Bt,AF,Ax,by) = 19)

~j2r(btp+bFr+Axu+lyv)

= [/, u,v)e ded7 dudv

6. REVERBERATION

Eguetion (16) and its generalization (18) may
be applied to the problem of clutter and re-
verberation. Reverberation is assumed to
arise from a collection of scatterers having
a random distribution in range and velocity,
giving rise to an echo having a random dis—.
tribution in delay and Doppler shift. The
scattering function L determines how the re-
verberatian energy in average will be distri-
buted in delay, Doppler and angular space.

The range, Doppler and angular resolution of

a system in & random inhomogeneous medium can
be expressed by the output ambiguity-functian,
expressing the combined effect of the signal
and the medium. If the scattering function

can be factorized

LGi,T,u,v) = L{p,7)-L(u,v) , (20)

the corresponding correlation function of

the medium-transfer FYunction can be

factorized as well
RH(At,Af,Ax!Ay)zRH(At,Af)'RH(u,v) - 21

The mean reverberation Doppler shift may be
calculated as
J/ LU, v )dedn

b= (22)

I_,_.\

\Y

and the mean squared Doppler spread
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:2= C f/yZL(u,T)dpdT 23

\Y

with the total volume of the scattering func-
tion
Lv = f/UCu,7)dudT
The mean delay and the mean angular spread
may be defined in the same way. If we assume
3 Gaussian shaped scattering function
2,2 2,2 2,2 2,2
- - b
L(u,t,u,v)=e n(p/a8%+1 /b +u/c+v/d%)
(24)

the corresponding correlation function of
the transfer function of the medium will be

also Gaussian:

RH(At,&F,ﬁx,iy) =

—n(azﬂt+b2AF+C2Ax+d2&y) (25)

= a-b-c-d-e
The assumption of wide-sense-stationary un-
correlated scattering, however, may not be
valid in reality. Then more general ex-
pressions for the space-time correlation
function of the scattered field have to be

used as has been shown in Ref. L1J.

7. MULTIPLE SCATTERING

We consider n randomly moving discrete
scatterers in an inhomogeneous medium and an
electrical signal s(t) acting on a radiator R
which produces a field Y(x). If the j-th
scatterer causes a scattered field f.(g) and
if its corresponding system operator is $j,
then the total spatial stochastic system is

given according to [1] as:

n n n
o =12 0, +32 v 0.0, «+
i=1 % i=1 j=1
i%] (26)
n n n
+ 20D 2 0,00 + ... R
=1 j=1 k=1 > 1K
i4j 5 Jik

The first term gives the contribution of
the second term that of the
ttie third term that of the

first scattering,
second scattering,
third scattering and so on.If we consider a
continuous distribution of scattering ele-
ments or so-called blobs, the sums have to be
replaced by integrals as will be showr belou

for the case of troposcatter field represe-t-

ation. An inhomogeneous medium is given with

a dielectric constant:

+ 8(T,8)

€ = €
o

Em is the mean value and 8(T,5) describes its

random fluctuations,s being a stochastic
gnsemble parameter. The vector ;=(x,y,z)

a

gives the position of €. The elimination of
the magnetic field from MAXWELL's eguations
leads to a wave equation for the electric

field vector.
2—' - M=
VIE(r,t) + V(?E(r,t)-Ve) =

2= -
epa E(r,t)

(27)
212

If the changes of %/?0 are small over one
wave length of the high-freguency carrier
signal, the gradient term may be neglected.
Thus the coupling between the components of
the electric field strength and the resulting
depolarisation effects are not taken into
considerantion. For each component of E the
wave equation can be put into the following
form:

2 o
E“?) E(r,t) =

2
(v - ek
ot

a
(28)

- 2 -
= %(r,s)uu 2—5 E(r,t) .
dt

This inhomogeneocus wave eguation may be
formally treated as if the right hand side
were a known function. We get the formal
"splution':

E(r,t) = Ei(r,t) + (29)

- o - 2 -
s u Je(F,E)6(T, T, t,t ) SE(TT, t )d 0 dt
s] 2
ot
with the GREEN's function:
1
; (t'-(t-clr-T' )

— el bl .
Ln lp-T1}

G(T,0',t,t')=- (30)
The term Ei(;,t) represents the primary

incident field, that is the solution of the
homogeneous wave eguation in the absence of

the random component %(;,S).

For nmnarrow-band signals, where the carrier

freauency is large compared tg the hzrc-

width of the —odulztian ve ~=zy uwurite:
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R7E(T,t) .

5 ng(;,t)
2t

(31)
Eguation (23) yields a scalar integral
equation for each component of the unknouwn
wave function E(T,t). The NEUMANN-LIOUVILLE-

expansion may be applied:

E(R,t) = £, (R,t) -
2 ~r - , - = . 3
- wlhg / 8(r,8)E, (r,t)BE(R, T, t,t )d7rdt" +

Y2/ e(R, T, )8 (E

m>

£
3 >/

’ 7

(32)

3

BT, T, e, E)E, (T e dt nd rdt !

@R, 6., .

- Ei(ﬁ,t>+E(1)(ﬁ,t)+E
The secand term E(q)(ﬁ,t) is the so-called
BORN approximation for the scattered field.
The third term E°27(R,t) describes the effect
of two successive scatterings at two volume
elements. An incident wave falling on the
first scattering element 3(r') is scattered
and reradiated to T by B(;,;',t',t"), the
second element 2(r) reradiates the result to
the receiver via G(ﬁ,?gt,t'). The double in-
tegral sums the contributions over all
possible pairs of scattering elements.
Further terms represent the contribution of
Fram (32)
the space-time-correlation function of the
scattered field <E(§1,t1)E(ﬁ2,t2)> may be

using symbolic shorthand

third order scatterings and so on.

calculated,
notationg of stochastic system operators as
applied by LIU (1], TATARSKI .5 and
MIDDLETON 6.

8. CONCLUSION

A short summary has been given of the theory
of linear spatial stochastic systems and
associated random integral eguations. The
theory may help to describe and to under-
stand wave propagation phencmena in a randam

medium.

It gives insight into the physiceal propa-
oatian mechanism, as has been shown in the
crese~t pzper for the case of multiple

af ti-e-cependent electromagretic

atmosphere.
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