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RESUME SUMMARY

C'est plutot common, 1'application du modélisa- It is qguite common in passive sonar systems to
tion de propagation d'onde plane pour les sonar apply a plane wavefront propagation model. With
passif. Pour un matrice interspectrale, un vecteur- respect to the spectral cross correlation matrix
source normd dependera seulment sur la direction. De (SCCM), a normalized point source vector will depend
1'autre coté un chenal stratifie (1'ocean et ses only on bearing {and elevation in a more general
délimitation} produit pluseur (M) modes. Le résultat case). On the other hand a layered c¢hannel such as
est. un vecteur-source avec M+1 paramétres. Ici un the ocean and its boundaries gives rise to several
develope un méthode pour traiter ce modélisation. Un (M) modes. This leads to a source vector with M+1
sous-produit de ce méthode peut etre un mesure de la parameters. A method is developed to handle this
qualité du modélisation. model. A by~product of the method might be a measure

for model quality.
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INTRODUCTION
The consequence of a plane wavefront
propagation model is that the contribution from a
point source to the SCCM  has maximum three
parameters: the power at the array. the bearing, and
the elevation. The normalized source vector will
depend only on bearing and élevation. A filter vector
matched to this model is usually called the steering

vector.

In the real stratified ocean, this model is
generally not correct., It might be expedient for
modestly sized arrays, but as soon as ambition for
higher resolution leads to both larger arrays and
high resolution methods. one might be heading for
problems. Improved propagation models have shown that
the layered propagation channel formed by the ocean
and its boundaries gives rise to several modes, all

with different horizontal wavenumbers <1>,

Using this model, the new normalized source
vector is a linear combination of M vectors. one for
each mode. The individual mode vectors depend only on
bearing and local environmental conditions, and are
therefore assumed to be known (except for bearing).
On the other hand, the combining weights depend on
the total channel from source to receiver (including
their positions}), and are assumed +to be wunknown

parameters.

A generalization of a method by Bienvenu and
Kopp <2> 1s developed to handle this model. Our re-
sults of simulations so far indicate no improvement
in bearing resolution relative to a plane wavefront
model. But, fundamentally. discrete sources can be
discriminated only when they have different source
vectors. For the plane wavefront model, the only
discrimination parameters are bearing and elevation.
In the normal mode case, because of the richness of
parameters, the discriminating capacity is highly
improved. Even souyrces at the same bearing are
discriminated as long as they have sufficiently

different source vectors.

The N eigenvectors of the SCCM will span an
N-dimensional space. This space is divided into two
spaces, one containing the source vectors, and one
orthogonal to the source vectors. Finally, the sum of
the outer products of the source vectors should eqgual

the SCCM. If we are unable to find source vectors

satisfying all these conditions. it might be an
indication that the sound propagation model should be

modified.

In addition to <2>, this paper is based an
ideas expressed by Mermoz in <3>, <4>, and <5>. Some

background for this paper is also in <&>.

MODELS AND ASSUMPTIONS
Cur passive sonar receiver system is 3
completely general array with arbitrary geometry
consisting of N sensors (hydrophones). Furthermore
the data are quadrature bandpass filtered., so that a
delay T c¢an be substituted by a phase factor

exp{-jenfr).

A point source in the far field combined with
the normal mode propagation model, will produce the
following data vector on the array:

M
X = s m§1 a Dm(B) = s D{B) A (1)
where s is a zero mean random variable, and a. is the
complex amplitude of the m'th mode. normalized such

that the mode amplitude vector A has unit length:

.
O LN (2)

D is the m'th mode vector <i>:

”m(z1) e-jkm[x1cos(B)+y151n(B)]

um(zN) e—jkm[chos(B)+yNsin(B)]

and D is the mode matrix:

p = [o, ... 0] (5)

For the m'th mode. km i3 the horizontal wavenumber.
and um(z) is the mode amplitude (eigen)function. X
yi. and zi are the coordinates of the i'th- sensor
and B is the bearing of the point source relative to

positive x-axis.

In a spatially coherent situation, the expected

SCCM will be:
*
R = E{XX1} = o DAA D = FF (6)

where o is the standard deviation of s, and F is:
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The parameter B is dropped for convenience.

Finally, let there be T point sources contri-

buting to the SCCM:

T * * T * *
R = [ o, D. A, A.D, = L F, F, = FF (8)
- . i i -1 . i i LI
i=1 i=1

where we have introduced the source matrix F:

o= [F . Fl ()

"

Qur task is to estimate the unknown parameters
of an estimated SCCM, assuming T<N and M<N-T. Before
doing that, we will develop some mathematical proper-

ties of our model SCCM.

MATHEMATICAL PROPERTIES

The matrix R has orthonormal eigenvectors and
real nonnegative eigenvalues: En' An. n e {1...N}.
The eigenvalues are indexed in decreasing order.

Assuming T<N, it follows that:
ne {T+1 .., N} (10)

As a consequence:

*

B &y By ()

E z
where we have introduced:
g, = [E, .- &] (12)

A = diag()\1 . AT) (13)

3 spans a T-dimensional subspace S The source

wil e
vectors Fi have to be linear combinations of these

eigenvectors:
T 172 172
F. = L[ z_ . A E = E, A Z. (14}
i hay Neion n sl -h i

and, even more compactly:

Fo= e A2 (15)

- “ho-l -

where we have introduced:

~
1
|t}
N

.
- (18)

(17}

SN
n
~N
-
~N
-
(M}

Inserting (15) into (8) yields:

12 % 12 _x x
B o= Byl 22 0 & 7 g NE

- *
Premultiplying by Awﬂla Ewu and postmultiplying by

the conjugate transpose yield:

(18)

*

27 = (19)

§—

As the T source vectors defining F are independent, Z

is nonsingular and has an inverse, From (18):

-1 *
7=z (20)

Z is seen to be an unitary matrix.

The remaining eigenvectors will define a sub-

space §, orthogonal to the source vectors Fi:

*

% .
E, Fi = Ey 91 Ai = 0 iefr ... T} (21)

in obvious notation.

ESTIMATION

Let R be an estimate of an SCCM of rank T. We
want to match it to our model matrix R given by (8).
The parameters to be estimated are Ai' Bi. and 9, i
e {1 ... T}

In the ideal case. the parameters of a source
should satisfy (21}, In practice. however, it might

be reasonable to try to minimize the norm:

x % -
JEA) = A DBV E E DB A = AT QA (22)

while obeying (3). The matrix §¢ consists of eigen-
D(B) is

As a function of 8.

vectors of R. corresponding to E, for R.

the model part. taken from (5).
the minimum of J(B.A(B)) 1is . the smallest eigen-
value of g. and A{B) will be the corresponding eigen-

vector,

If we plot J(B) obtained this way versus B, all
local minima indicate possible point source parameter
solutions B and A(8). The closer J(B) is to zero. the

better match to the model.

The last parameter o can be obtained by com-

bining (7) and (15), using estimated quantities:

F o= oDIB) A = E 611]/2 z (23)
o -1/2 ok

Premultiplying (23} by é“ §"

z = AP 0B Ao (24)

23LJ
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{0

From (20) follows the fact that Z has unit
length, with the obvious result:

g = [A*g*(s)g -1

e N R Nk
g Ay Ep 0B A ] (25)

What happens if there is more than one source
on a given bearing Bu? Because the TU sources cannot
be at the same point., they will certainly have
different mode amplitude vectors Ai' In the ideal
case, this means that for the bearing BU there will
be Tu different A vectors making (21) equal to =zero.
In. other words, there should be TU eigenvectors of g
in (22),

producing small eigenvalues. The

corresponding vectors Ai can no longer be uniquely
estimated, but are 1linear combinations of these Tn
eigenvectors. One should therefore plot several of
the smallest eigenvaues of Q to make sure one will

determine the bearing of all the sources.

Another problem should also be addressed. There
might be situations in which our model matrix 0 in
(5) does not have full rank M. As an example, 9 has
rank 1 at broadside with a horizontal linear array.
In such a case Q will have M-1 zero eigenvalues at

broadside even if there are no sources there.

If 9 has rank K, the problem can be solved by
substituting g in (22) by a matrix 6 of rank K.
spanning the same subspace as g. g could be produced
from D by a Gram-Schmidt procedure, or consist of the
K eigenvectors of 9 Q* with nonzero eigenvalues. In
any case one will have:

D = 64U (26)
u = §* D (27}
6 can be expressed uniquely by D only if D has full

rank M.

Returning to the estimation, G should now sub-
stitute 9 in (22). Otherwise the procedure will be as
before. However, the resulting eigenvectors H of Q
will no longer represent the mode amplitude vectors
A, A can only be uniquely estimated insofar as g has

full rank M. In that case:

-1
A = U H (28}
Some preliminary simulations have confirmed all
the described estimation properties., but so far a
matrix completely matched to the model matrix has

been used.

MODEL QUALITY

Let us assume we have been able to obtain T

vectors Fi satisfying (21):

£ >

ELF = 0 (29)

Is it guaranteed that this F matrix will satisfy (6)?
No! To see this, let us construct a matrix with the
structure of (15):

. 1/2
£ En Dy 2

and choose Z so that it is not unitary:
z2 2 2 I (31)

Then it follows from (11), {30). and (31):

* 12 D% Al2 _* T oox
= = FF (32)
8 Ev M & 2 Bl 22N 0§ £f
But at the same time (29} is satisfiéd:
x " * 1/2 -
= = {33)
E,F ELE Ny 2 0

using the orthogonality of thé eigenvectors.

The general observation is that (15) and (19)
together are sufficient conditions to be satisfied by
the modelled source vectors Fi' On the other hand.
(29) is not a sufficient condition. It is sufficient

to satisfy (15). but not (18]},

From the above discussion, two questions immedi-
ately arise: N
- How can source vector estimates Fi based only
on {29) be any good?
- As (15) and {19) together constitute a suffi-
cient condition, while {29) alone is not. why
base the estimation primarily on (29), instead

of on {15} and (19)7?

A conjecture is that (29) is sufficient if the
correct source vector model has been used. In our
case, if the model described by (6) and (7) is
correct. and really desribes how a point source
contributes to the SCCM, then estimates obtained from
(29) alone will also satisfy not only (15), but also
(19).

I+ this is correct. an interesting consequence
is that the degree to which the estimated matrix Z
(derived from the estimated source vectors) will
satisfy (19). is a measure for the quality of the

model <3>.
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The answer to the second question is that it is
simpler to use (29). instead of (15) and (19), in
order to obtain estimates. because (29) decouples the
estimation of the individual source vectors. (18) is
seen to be a highly coupled condition, and difficult

to include explicitly in the estimation procedure,
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