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RESUME

Dans cet article, on propose 17application de la mé-
thode des moindres carrés aéneralisée a 1 estimation
de la frégence des sinusoides dans le bruit coloré
additif. Dans 1 analyse théorique on définit Tes
expressions nour le limite en probabilité des estima-
tions des parameters du model du sianal, ainsi que
pour ia covariance de 1erveur d’estimation asympto-
tigue. Les resultats obtenus npermettent de construire
un alaorithme efficace pour les applications prati-
aues. !“analyse experimentale démontre que 17algorith-
me proposé donne des résultats précis mémedans Te cas
des rapports sianal sur bruit trés petits.

INTRODUCT ION

Estimation of frequencies of sinusoids in additive
noise is one of very important problemsis digital sig-
nal processing. A large number of recently published
papers have been devoted to this problem. Diverse
solutions have been proposed, starting from differ-
ent assumptions and using different methodologies (see
e.a. |1]). An important class of frequency estimation
alaorithms s based on the parametric representation
of the sianal model in the transfer function form

|21, Such an approach allows the application of met-
hods initially developed within control theory and
system identification. It has been shown, for example,
that the least-sguares, instrumental variable maximum
1ikelihood and iterative inverse filtering methods
can be successfully applied even in the case of low
SNR ratios and small data sets, e.a.|1,2,3,4,5].

This paper discusses the application of the generali-
zed least-sauares method to the estimation of frequ-
encies of sinusoids in colored noise. The theoretical
analysis starts from the expressions for the asympto-
tic bias and error covariance in the case of the cla-
ssical Teast-sauares method. This methodology is
extended, through a detailed derivation, to the gene-
ralized least-sauares method, in which the asymptotic
bias, characteristic for the least-squares method, is
removed by adequate measurement filtering. The obtain-
ed results valid for one sinusoid in white noise,
provide a deeper insight into the basic mechanisms of
the method and relationships between variables and
parameters involved. As a result, an algorithm of
the generalized-least-squares type, efficiently
applicable in practice, is derived. It possesses com-
putational advantaces over some popular versions of
the maximum 1ikelihood method. Experimental results
clarify its characteristic properties aiven in compa-
rison with the maximum Tikelihood and instrumental
variable methods.

SUMMARY

In this paper the application of the generalized
Teast-squares method to the estimation of frequencies
of sinusoids in additive colored is proposed. In the
analysis expressions for both the probability 1imit
of the estimates of signal model parameters and the
asymptotic estimation error covariance are defined.
The obtained results enable the construction of an al-
gorithm efficient in practical applications. The
experimental analysis shows that the proposed algo-
rithm provides accurate results even in the case of
very low signal-to-noise ratios.

PROBLEM STATEMENT

Many frequency estimating algorithms are based on the
following model which is valid for a signal y(i) com-

posed of a sum of n sinusoids x(i)= 1Amcos(wm1'+¢m)

and additive stationary, zero-mean Gauss1an noise
e(i)
- -1 s
Az ))j(1) Mz )e(d)

Here A(z™") = 1+a1z 1+...+a2nz

(2.1)

20 s a polynomial in

the backward shift operator, its coefficients beeing
symmetric a. —a2n j for j=0,1,...,n, a, = 1, and its

roots lying on the unit circle in the z-plane in com-
plex conjugate pairs. The roots” angles correspond
to n sinusoids” frequencies. In this way the problem
of estimating the unknown frequenc1es becomes the
prob]em of estimating parameters Al= [a1 2+ 2n] or

just AxT [a1a2...an]]1|.

Let the additive noise e(1) be represented by an
ARMA model e (1) = (B(z™1) / D(z~1))£(i), where £(i)
is a white zero-mean Gaussian noise w1th variance
oZ and B(z‘1)=1+b1z'1+...+bpz'p ~1)=14d,z7 et
+d 7 9.

q

Assume that N signal measurements are available. Then
the signal model can be written as

Vy(N) = =M (N)A + Vg (N) ( 2.2)
where V = 2ntl)y(2n42)...y(N)],
Fy(2n) y(2n=1)ay(1)
'M'y( i !_;/(N-U y(lil-Z) ...y:(N-Zn)
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Vo (N)=V_(N)#M_(N)A, VI(N)=[c(2n51)e(2n42). . .c ()],

M(N) = F(Zn) elen-1) ... e(1) J
: e(N-1) e(N-2) ... e(N-2n)

The symmetry conditions may be used to derive a sym-
metric model

qu(N) = —My(N)QA*+Ve(N)

where q=1+z—2n, while 0 is a 2nxn matrix
00 ... 010 ... ooﬂ

(2.3)

T |00 ... 101 ... 000
Q=
01 ... 000 ... 100!
10 ... 000 ... 010]

Starting from the sional model (2.1) different estima-
tion algorithms can be defined. It is well known that
the Teast squares (LS) algorithm

Arye T =17
A(N)=-[My (N)M (N)] M ()Y (N)

gives asymptotically biased estimat$s ﬁT(N)=[31(N)
3,(N)... 3, (N)] of the parameters A =[a1a2...a2n]

due to the correlation between signal samples y(i)=
=x(1)+e(i) and the noise term in the signal model
(2.1) e(i)=A(z"1)e(i). An order to study the asympto-
tic behaviour of the algorithm the probability limit
of the estimate

oL[R(N)] = plim A(N) (2.5)
Noroo

(2.4)

and the asymptotic variance

AWRM)T = 3 pTimtR[R(N-PLIRMNT] [RO)-PLIR(N] 1Ty
Nevoo :
(2.6)
are calculated 13]. Inserting (2.2) in (2.4) we obtain
& T 1,7
= - N .
AR(N) = A [My( )My(N)] My(N)Ve(N) (2.7)
Taking probability Timit and making use of a corollary

6f Slutsky’s theorem [3,7| we obtain the following
expression valid for algorithms of LS type

PL S [R(N)] = A - R;1Pe ‘ (2.8)

ol T 1. )
where R = ﬁllm[ﬂ My(N)My(N)] =R, +R, [Rx]ij =
N S .
= Z 5 Acos(i-3)u, [Relij =r (i-3) and P =P+

m=1
+RA, P = plin[d MLV (M)] = [r (1)r_(2)...

€ € N—)oo £ € € €
...ré(Zn)]T.

Similarly, starting from (2.6) and (2.7) we get the
following expression for AV of LS type algorithms

ay g [RN)] = R;1ﬁlim{% ME(N)Y (N)VL (g () -

MZ(N)Ve(N)PZ—PeVZ(N)ME(N) +

1

1

Too-T
NP IR

o+

(2.9)
The LS algorithm may be applied to the.symmetric
model (2.3) yielding

e nvo TaTmT -1.T,T N 0
AE(N)=-[Q"m (MM (N)O]™ Q"M (M)av, (M) (2.10)
The expressions for the corresponding PL and AV are

...1
PL S [A*(N)] = A - RE™ P (2.11)

A 1wt co 1 T T T
AV g [A ()] = T ﬁllm{ﬂ QM (N)V(N)M_(N)Q -
Tl T_psey T Tipx-T

QM NIV (N)PET-PEV (N)M_(N)Q+NPEPE IRy

(2.12)
where R*=Q'R Q and P*=2Q'p +Q'R QA*.
y N e € [

In the case of white additive noise e(i)=£(i) PL of the

LS estimate becomes
~ 2,=12
PLLS{A(N)]= A-(RX+Io£) ”gA (2.13)
T

PLg (M) = w-(aTryas000d) T ool (2.14)
‘n
As the signal to noise ratio (SNR=10 log (j§1 A? /Zoé)

decreases, the asymptotic bias corresponding to the se-
cond term of (2.13) or (2.14) tends to -A or -A*, and
estimates R(N) or A*{N) tend to zero. For extremely iow
SNR the estimated polynomial ﬂﬁ(z'1):1¥3T(N)z‘1+...+
+a%(N)z 2n+1+z 2n becomes almost equal to 1+z 2n’ S0
that its roots are spread at equiangular distances on
the unit circle in the z-plane. Particularly, if a
second order symmetric model is used to estimate a sin-
gle sinusoid’s frequency (QT=[1 0]), the true value

of the parameter 3 is a1=2c05m1, while

1
()] = |1 - ——————-]a
(N Pl

LSt
1+ A J
202
g

PL (2.15)

According to the expression (2.12) AV of the LS estimate
for the second order symmetric model is

4(1+2C0$2w1)

RV 5

o 1
[ 1.1
L [FM] = 5 ; (2.16)

AL

2
202

(

GENERALIZED LEAST-SQUARES APPROACH

The basic idea of the GLS method is to prefilter the

signal y(i) in order to whiten the equivalent noise in
the signal model (2.1) and, thus, to decorrelate the
filtered signal and noise samples |7,8,4|. Obviously
filtering

"o -

i) = vy (3.1)
has this property provided additive noise is white. Ha-
ving in mind that 1/A(z 1) is the matched filter for
the signal y(i) composed of sinusoids and additive whi-
le noise, it is clear that the output y(i) has deter-
ministic components with Tinearly increasing amplitudes
at the original signal frequencies so that the effective
signal to noise ratio is improved. However, the filter
required to whiten the noise term in the signal model
is not convenient since it is on the stability boundary.
Contracting the filter poles in the z-plane towards the
origin, a stable filter is obtained. As the result, the
asymptotic’bias cannot be eliminated, but it can be sig-
nificantly reduced with respect to (2.11). The detailed
analysis will be presented for the single sinusoid case.

The asymptotic estimate PL. .la* (N)l=plim 37 (N) is
GLS - 71 e |

derived starting from the assumptions that the signal
samples are filtered by the stabilized filter of center
frequency arccos{% PLGLSEQ7(N)]}

| i} 1
) 1+ PLGLngﬁ(N)]z_1+a

55+ (05t
Z

(3.2)
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and that a LS-type algorithm is used in estimating the
parameters of the model

qu(N) = -My(N)QA*+Vg(N) (3.3)
thus, the est1mate is

Re(N) = -[g (MM (N) - TM» Ma¥y(N)  (3.4)
Here Mn(N), Vy( )s Vg( ) represent filtered versious

of My(N), Vy(N) and V (N), respectively. Accordinaly,
filtered versions of M (N) and Vg(N) will be denoted
by MN(N) and Vw(N), wh11e y(]) ( )ﬁ (o _1), X(i) =
() (e 1), ¥(i) = e(i)/ag(ez”) and §(i) =

= e(1)/A*(az ) denote filtered values of y(i), x(i),
g(i) and e(i), respectively. The amplitude i of the

sinusoid x( i) is easily determined by substituting
e’ for z in (3.2). Introducing

_Pgslml e amoTee
= —————?;;—~——- it follows that the amplifica-
n
tion g = A1/A1 achieved by filtering is equal to g =
~Juy 2 %01 o
= |1+2afe  ‘cosw +ae |"“, which yields
g = gy ) (3.5)
(1-0%)PraanF) (1-aF )2
The filtered noise can be represented as
B - kjE(i-3) (3.6)
j=o

where )
kj =0 for j<0, ko=1,

These coefficients are easily found to have the follo-
wing properties

) 2 .
kj—-afa1kj_1—a kj-Z for j>0.

Tim ky = 0 (3.7)
Joroo
® 2

Ky = K =1 T —

j=o I 1-0® (140%)"-(afay)

—afa1
—zk g — K
JIH g2 0

Proceed1ng as in the case of ordinary LS algorithm,
studied in section 2, we obtain

~ -1
PL g [R(N)] = A - Ry Py (3.8)
where R = ?TR¥Q, Py = ZQTPm+QTRmQA*,
Ry = ﬁlim & My(N)NN(N)} =Ry+Ry, [Rm]]J —m:1 2A cos (i-
=3 )uys [RE‘1J = rE(1 j) and Py = ﬁ]1m[N % N)Vw (N)] =
[rm(1 ry 2) (2n)] . In the one dimensional
case®
er(1)+rw(0)a
ok - 1
PLGLS[a1(N)J = 2y ?;TGTIF;UET———— (3.9)
which is readily represented_as 2
. 2K1 t + Koc€a1
Plo g [a5(N)] = ay - (3.10)

e
gA1/2 + KOOE
Owing to (3.7)
(1-0)%426(1-F)
o2
(142) (14 Ly
Ko 20¢

foq - (3.11)

Introducing
2
G = e =g (3.12)
2 Ko
(1-a)

and rearanaing equation (3.11) we obtain

I 1
f=1 “"’7;?‘ (3.13)
146 —s
202
£
Comparing (3.13) with (2.15), previously derived for
the LS estimator, it can be seen that G plays the role
of the effective, over-all gain due to filtering. Subs-
tituting for g and K from (3.5) and (3.7) we obtain
2)2_ 2.2.2

(140)%- L) {T-of]) o

_ 4o
G = 3

(1-a)

(3.14)

The pair of equations (3.13) and (3.14) defines the
asymptotic value ofzthe GLS estimate.
A

For 1-a<<i, {-a<< —1§ and (1—a)2<<1—c03w10ne obtains,
20
approximately, &
32
(1-a)7o
=1 - _E___é (3.15)
AS
i
6 = 2
" (1ea)S

| will be

derived starting from the assumption that signal samp -
les are filtered by the stable filter (3.2). However,
for close to unity the asymptotic bias may be neglec-
ted according to (3.15), and thus the center frequency
of the filter may be considered equal to the algorithm
(3.4) is that of the LS, AVGLS a*(N) is derived on

the basis of (2.12) by substituting R§, P;, M and Ve

by their filtered versions, which correspond to the
second order symmetric model of a single sinusoid in
white additive noise: R;, P;, M and Vs respectively.

An anproximate expression for AVGLSlaf(N)

In this way, we obtain
plim{d s?(N)-25s(N)+s?)

- 1
Al s[5 (0]= § TN = 712
[b]im{ﬂ D ) kmE(J'm‘1)] }J
Mo T J=3 m=0 (3.16)
where
N 0 ©
s(N) =} ] [ke(3-m-1)] } [lkragky gk o)e(3-m)]3
j=3 m=o0 m=0

S = plim {3 s(N))
N->oo

After a straightforward but rather tedious derivation
one obtains for o=l

. ) (1-0)3(1-cos*u,)
Mg [25(N)] = 2 ra— (3.17)
(15
20
£

Notice that the obtained error variance offers an
improvement when compared to the AVLS aﬁ( )l given in

(2.15) and_AV a*(N)] derived in [3]| for the instrumen-
tai var1ab e %%V method.
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FREQUENCY ESTIMATION ALGORITHM

The application of the GLS methodoloay to sinusoidal
sianals requires no special steps to estimate the
filter parameters |7,8|. The algorithm makes use of
the previous estimates of parameters A, i.e. in the
k-th iteration the signal samples are filtered by the
firter /a5 (o 27T,
(k=1)T

O<uk<1 based on the parameter

(N) = [&F(N) @5(N)... &*(N)]
obtained in the preceeding iteration, so that

. ~,
vector estimate A*

k-1 -1 k-1 -1 k-1) 2.-2
R T T S ()RR T P
* - - - -
4.t %1(k 1)(N)a§n 1 2n+1+u§nz N nd
f\f(k)/;\ - Y(1) 1A AN
v (1] » (5.1)
A N (akZ )

Then, the estimate ﬁ*(k)(N) is obtained by applying
the LS aloorithm to the filtered sianal samples

MLEPY

B0 == LTl DTl g™t Doy
qV§k'1)(N) (4.2)

*
In thke first iteration the estimate A (1)(N) is obta-
ined on the basis of the oriainal signal sample se-
quence y(i). For Tow SNR this estimate may be hichly
incorrect, so that takina «o=1, one wa{ inhance false
frecuencies, As k increases and Now A N\ should
tend to the value PLGLS[A*( )] wk1ch is, accor-

ding to the results of the previous section closer to
the true value A for o closer to one. Therefore, the

choice of the sequence oy is of an extreme importance.
It depends highly upon the uncertainely about the
true value. The closer the initial LS estimate of
A(z=1) is to 1+z-2N, the hicher this uncertainely is.

For a single s1nuso1d the areatest disagreement betwe-
en the PL ¢ [a*(N)] and the value aq occurs in the
cases of very low sinusoid frequencies and very low
SNR. To derive the optimal sequence for this case we
proceed as follows.

The estimate‘“?(k)( N) obtained in the k-th iteration
on the basis of signal samples filtered by 1//l*(k .

(w2 1) = 1/ (T4 1(k 1)(N)z +a§) is, in ana]ogy with
(3.11),
3*(k_1)(N)
" F (e 20, (1- o) ]
) = e, [1 -(1+ " TR ) | (4.3)
L o ng-1) 20§ J
where
g (k1) 1ol (14ad)2alar (k12 ()
ng_T) 1+a§ (1~ u§)2+ak(ak 1-a1( kh»(a A;k 1% N))
(4.4)

(4.3) may be written in the form

ﬁﬁ(k)(N) = a1 - “‘““L“if”" (4.5)
A
[ (k) L
20
£
where 2
A (k=1)
(k-1) 2 (k-1>™M | g
20, 6 +(1+ak)(1+G E;?J _TE_TT
6(k)- e % (4.6)
2
2 2 (k-1) M
THa ) +(1-0, )G —
k k 92
o]
£
For the worst case of zero frequency and maximum bias
the ratio g(k—1)/Kék-1) becomes
(k-1) 1-a§
S = — (4.7)
K 1+a
0 k
Inserting (4.7) into (4.6) we obtain
1420, 60K ) 0Ze(12a2)6 1) 42y (26
(k) _ k k k 1 £
¢ s 2 (T), 202 - (4.8)
1+ uk+(1—ak) G (A1)/(20€)

Looking for maxima of expresgion (4.8) for k=1,2,3,...
and neglecting terms with <A1)/(205) we obtain

o = (E-nRET 6ok (4.9)
This is the rate of improvement in SNR for the worst
case. Assuming less severe conditions different sequen-
cies of o, can be established to yield faster conver-
gence. For example for a high SNR the choice of cons-

tant o close to unity may be suitable.

The same methodology may be applied to the nonasymmet-
ric signal model, as well.

COLORED NOISE CASE

GLS method can easily be extended in order to deal
with the problem of sinusoids in additive MA noise
£(1)=B(z=1)£(i). The extended GLS (EGLS) algorithm
designed to estimate both A and B parameters of the
mode]

De(d) (5.1)

Az Yy(i) = Az Bz

has the following form

8 ny=-[ e DT k!

(k=1)T

where

(k)T k)T

* o
o Ty = (T s 0Ty (5.5)
is the extended vector of parameter estimates in k-th
iteration and
(K)rny =

-

o nl o] (5.6)

Mék)(N) beino a matrix formed of elements y(k)(i),
=N-1, N-2,

i arranaed in the usual way.
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A nonsymmetric version of the algorihtm can readily
be written.

One can immediately notice the resemblance to extend-
ed Teast squares (ELS) and maximum likelihood (ML)
methodsbased on the signal model A(z-1)y(i)=C{z-1)e(i)
17,5]. However, the proposed EGLS method makes use

of the prior knowledge that the system noise term is
of the form e(i)=A{z-1)B(z™1)&(i). In this way it avo-
ids redundency in the number of parameters and requi-
res lower model orders than ELS or ML method for the
same signal. In addition, the EGLS method provides
directly the noise parameters estimates.

EXPERTMENTAL RESULTS

An extensive experimental analysis of the algorithm
has been undertaken. Some illustrative computer simu-
Tation results are shown bellow.

The debiasing effect is demonstrated for a single si-
nusoid of constant frequency w1=0.4ﬂ uniformly sampied

in 1000 points and for three values of SNR. The assu-
med model was second order symmetric and o =.9. Teble
1 presents frequency estimate mean values and standard
deviations obtained both analyticaly (PL and AV )
and by means of Monte Carlo simulations based on 30
noisy signal realizacions (EMV and ESD). A high agre-
ement between theoretical and experimental values is
evident, as well as the reduction of the bias and
variance, compared to the LS case.

Figurz 1 represents typical convergence behaviour of
*ne iterative6LS algorithm for four values of SNR.
1000 samples of a single noisy sinusoid were used.
The signal model was second order symmetric and a=9.
Frequency estimates after each iteration are given,
showing a faster convergence for higher SNR values.
In the first iteration the estimates were obtained
applying the LS algorithm.

The application of EGLS algorithm to the case of mul-
tiple sinusoids.and additive colored noise is illus-
trated in figure 2, and compared to the ML and IV
algorithms, the signal was composed of four sinusoids
with frequencies w1=0.35ﬂ, w2=0.4n, w3=0.7TT and w,=

=0.7 © and additive second order MA noise with BT =

= {0.5 -0.23 and SNR=0 dB. 2000 signal samples were
used and signal models were nonsymmetric. The model
order was 2n=8 and p=2 for EGLS, while p=10 for ML.
The EGLS algorithm obviously has a better resolution
and accuracy.

CONCLUSION

In this paper an aralysis of the application of the
generalized least-squares method to the estimation
of frequencies of sinusoids in additive colored
noise is given. A detailed theoretical analysis of
the asymptotic properties of the estimates is presen-
ted. The derived expressions for the asymptotic bias
and error covariance represent the basis for a quali-
tative analysis of the advantages and disadvantages
the method, as well as for the derivation of an algo-
rithm able to solve the posed problem efficiently in
practice. From this point of view, the analysis rela-
ted to the way of choosing the factor contracting the
poles of data filter is especially important. The
proposed algorithm provides good results even in the
case of Tow SNR ratios. It possesses certain advanta-
ges over frequently applied versions of the maximum
- Tikelihood and instrumental variable methods.

Further investigations could be oriented towards ma-
king the contraction factor data dependent. This
would allow a high adaptivity of the method in the
case of imprecise a priori knowledge.
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1 1
SR 3 ?
(48] PLig B ) Plas EMas | AVs ESDis | AVgs ESDg s
3 0.43396 | 0.43550_ . | .0.40003 | 0.40005 | 0.00385 | 0.00422 | 0.00012 | 0.00023
3 ©0.46715 | .0.46830 | .0.40048 | 0.40048 | 0.00770 | 0.00781 | 0.00047 | 0.00066
-9 0.48901 | 0.48898 _|. 0.40012 ]0.40013 | 0.01027 | 0.00946 | 0.00183 | 0.00236
TABLE 1
1EGILS
EGLS
symmetric
] \

ML

Figure 2,




