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RESUME

Dans cette &tude on a consideré 1'éstimation
des moments spectroux avec ses applications. Les moments
spectraux sont fréquemment utilisés dans 1'anémometrie,
mesurage de type Doppler etc., ou les premiers tro}s
moments correspondent, respectivement, au volume, a la
vitesse moyenne et a la bande passante des diffracteum
La téchnique d'éstimation utilisée est une cxpansion
en série des termes d'autocorrelation. On peut faire
usage de la méthode d'entropie maximum pour extrapoler
la serie d'autocorrelation.

En particliere nous avons analyse le cas de
sinusoides contenus dans un bruit blanc additif. En
fait dan ce cas les caracteristiques statistiques et
asymtotiques sont explorés. Le probleme de test d'
hypothése est aussi formule en utilisant les moments.

SUMMARY

In this work the problems of the estimation
of spectral moments and their applications have been

addressed.

The spectral moments are frequently used in
anemomentry, Doppler measurements etc., where the firs:
three moments correspond respectively to the volume,
mean velocity and range of velocities of the scatter-
ers. The estimation technique used is a series ex-—
pansion interms of the autocorrelation lags. Use can
be made of the maximum entropy techniques to extrap-
olate the autocorrelation lags from a few known or
estimated lags. Special attention is given to the
case of sinusolds in additive white noise. Infact
for this case, properties, statistics and asymptotic
behaviour of the moments have been investigated. The
moment estimates are also used for the hypothesis
testing problem where the alternative and null hypoth—
eses, represent, respectively, the tone in noise and
noise only situation. The potential use of the moments
for the tomne frequency estimation is also considered.

1. INTRODUCTION

Spectral moments have been used in various app-
lications in radar and sonar problems [1], tone detec-
tion [2], mean frequency estimation [3], and convol-
ution, deconvolution problems [4}. As an example,
in radar applications the first three moments corres-
pond, respectively, to the volume, mean velocity and
range of velocities of the scatterers. The spectral
moments are conventionally computed by first obtain-—
ing an estimate of the spectrum function 3(f) and then
using the moment integrals. One can howewer estimate
the spectral moments using time domain information as
well, i.e., by using the inphase and quadrature sig-
nals [2] or by using a series expansion interms of
the autocorrelation lags as in [5].

In this study we investigate the use of maximum
entropy spectrum in the estimation of moments and con--
sider some of their elementary properties. In the
lag expansion method, for the moments we consider and
compare the asymptotic behaviour of the estimator
with the case when only a few lag terms are involved.
We obtain an expression for the probability density
function of the n'th moment and expand on its poten-—
tial use.
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2. MESA MOMENTS

Let us consider as an approximation the the momen:
integrals the sum in (1) with the N-point discrete
Fourier transform :

n

s(2) [—&§~]

which is valid when T/N 1is small relative to vari-
ations in the spectrum and where m, and T denote,
respectively, the n'th moment and the sampling period
Expanding the factor ( T/N) interms of a cosine series
157, one obtains a moment expression h terms of the

autocorrelation (AC) lags, i.e.,
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In practice only the first M AC terms may
be available; however higher order lags can be found
by extrapolation using the equation :

...... aMr kyM (3)
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where the {a; , j=1,2,... M} are the linear predic-
tion coefficlents found by one of the least squares

(LS) techniques such as, PARCOR, sequential LS, lattice,
covariance, autocorrelation ... algorithms. Because

of the potential implication of the maximum entropy
techniques in (3), we will call the estimates in (1)

the MESA moments.

2.1 Elementary Properties

Certain properties of spectral moments obtained
through the expansion in (2) are listed below.
-Shifting : The shifted moments
M T (f—fo)ns(f)df can be found as
.y i
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~Filtering : A process filtered through a systen

with power transfer function P(f) has the moments
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-Windowing : If the process is windowed with the

window function w(n), the moments take the form
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with

ré = (w(k) % w(k)) rg

2.2 Asymptotic behaviour

It is of interest to evaluate and compare the
moment estimates in (1) increasing number of AC terms.
Since the case of tones in the noise background is
analytically tractable let us infact consider their
asymptotic behaviour. The AC sequence for L tones in
white noise is given by

L 2

2 ,
Ty = o, §k) + ‘21 Ay cos wik
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(N

where 0% is the noise variance and §(k)
Kronecker delta.
For the noise free case (c% =0) and a single tone

(L=1), tne first moment is given by

is the
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Here using [6,pp.39]and considering the fact that my/m,
and [(mz—m )/mojvi are estimates, respectively, of
the mean frequency and mean square bandwidth (BW) one
obtaips the exact values f=f; and BW=0. For the case
of &5¥%0, the mean frequency and bandwidth become,
respectively,

" 1
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where u= Allcn is the signal to noise ratio.
In Equation (9-a) the term = is due to the

white noise mass; this bias however be eliminated and
this equation can be used as a tone frequency estimator.
The convergence properties of the series in (2) is
shown in Fig.l where both £ and BW“ are plotted as
functions of the signal to noise ratio (SNR) and para-
metrically dependent upon the number of lag terms M.
In this example one has T=0.05 sec, hence the Nyquist
frequency is 10 Hz and the tone frequency is 1 Hz as
in [7]. For SNR—+0, one expects F= _L and By =L
4T T
while for SNR-—+ = one should have f=1 Hz. One ob-
serves also that a good estimate of the moments can
be obtained by using only a few AC lags, 1i.e.,
5 <M < 10, The first and second moments can be reli-
ably estimated using two lags, however higher order
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moments require more tham two lags.

Two-tone case : The first moment expressin
for two tones in the noise-free and noisy cases hec-
ome respectively :

; 2 2
mll = Al f1 + Ay f2 (10-a)
12
;=0
and 5
i °n
m = A £ + A fp +
| 4T (10-b)
F%Z#O
Here my/mo yields the power weighted tone frequencies.

2.3 Statistical Properties

it is of interest to consider the probability
density function (p.d.f) of the n'th moment under
the tone present (Hi) and noise only (Hg) hypotheses.
We assume that the number of samples used N is large
enough to assume Gaussian statistics. Let us con-
sider again a two term approximation, for the moments,
i.e.,
n

Ty = o0 ¢ 11 (11)

Statistics for mp involving an arbitrary number

of AC lags can be obtained in a straightforward but
tedious manner,

For both the null and the alternative hypoth-
my has a Gaussian distribution with mean and

eses,
[8,12]

variauce, respectively as
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and E(.) 1is the expectation operator.

Let us now discuss two applications.

Tone Detection

The p.d.f. expressions for moments can be used
to set the likelihood ratio. Infact for M=2 one has
the log-likelihood ratio of the n'th moments |8,9
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being the threshold of the test. The false alarm and
detection probabilities are, of course, given by

m, _ A _ A
Pp = Q ( T O,n) and Pp = Q T 1,n
%0.n

—_— ) (17
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where Q(.) denotes the error function.

It wiil e of interest to compute the efficacies of
the above test and to compare the hypothesis tests on
the n'th moment (n=1,2,..... ) based on their asyptotic
relative efficiency (A.R.E.) figures.

Mean Frequency Estimation

The first moment can be used to estimate the
mean frequency as follows

;. 0,25 _ 0.2 “éz Tk-1 1

T T w1 Yoo (a-1)? (18)

In Fig.2 the estimated mean frequency is plotted ver-
sus the number of known AC lags. (Extrapolation goes
from 3 to 40 starting with the two known AC lags.)

The simulated tone frequency is 1 Hz and sampling rate
20 Hz. One observes an oscillatory behaviour for £
up to M=30, however higher order AC terms can be
obtained by extrapolation through Eq.3. The phase
dependency of MESA mean frequency estimator is shown
in Fig.3. It can be observed that the error depends

on the initial phase of the tone. For example for

6 <M < 8 minimum frequency error is attained at
about 9=180° while for M=18, good performance is
attained, at ¢=90° and 210°. Also the values of the
estimated frequency using the known AC are straight
lines as shown in Fig. 3.

Variance of the mean frequency :

A measure of the accuracy of the mean frequency
estimate the MESA method is given by the variance analy-
sis. In the calculation of the variance of f use has
been made of the variance expressions for the AC terms
as below :

The variance of the unbiased estimate of the
i'th AC terms is [10]

(%-1)

o 1 - (x-i- k)
Var { Ti} = IDT kee(noi)
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24 v ) - By (19)

k-1 k-1

Using second order approximation technique as in [11]

and assuming that the error in estimating Yol is
uncorrelated with ry, we have finally
2 2 n/2 r;k 1
. Var £ = 9% = 0.06 T7° Vyp = e (20)
k=1 (2k-1)
where r
|
2k~-1
To

Let us again specialize to the case of a sinusoidal
signal in white noise and consider two situations
seperately for analytical simplicity. The variance
of the mean frequency (N), sampling period and mean
frequency [8]

2
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£ .
® 4,2 §(J))}QD

2 -2
op = 0.04 T [(gk + 2y .

2
(on # 0)

Noisy case

2 -2 2 2 2
o 0.04 Tq uof(k) e " 2u g(i) + (1+4U)]”
£ (1+9" N N ]
0.04 T2 2 2
Dot S IR+ 20T byt B ¢ 2w (Bl B | g9y
(1+20)

where we have used the definitions
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The variation of the mean frequency estimation
variance with respect to the number of AC terms as
well as with respect to the 4 is shown in Figs.4 and
3 respectively., It can be observed from Fig.4, the
variance of the mean frequency estimate does not dec—
re ing M. For fixed N, the AC estim—
ation errors at higher order lags account for this

se with incres

behaviour. The saturation in Fig.4 is due to the k—2
term Eq.(20).

CONCLUSIONS

In this study we investigate the use of MESA
method in the estimation of spectral moments and con-—
sider some of their elementary properties. A good
estimate of the moments can be obtained by using oly
a few AC lags i.e. 5 <M < 10. The first and second
moments can be reliably estimated using two lags,
however higher order moments require more than two lags.

The analysis of statistical properties reveals
that Pp and Pp can be written as functions of the
expected value and the variance of n'th moment for the
tone detection problem. It will be of interest to comp-
ute the hypothesis tests on the n'th moment (n=1,2...)
based on their asymptotic relative efficlency.

Simulation studies have shown that after a

“certain value of M (typically 10 to 20) there is a

little improvement in the tone frequency estimate.
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Fig-2. Variation of the mean frequenﬁy Sstimation

variance with respect to u= Al/oﬁ



