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RESUME

Dans nombre d'applications, on peut désirer for-
tement contraindre (un seul niveau de discrétisation
en amplitude) la mesure d'une série temporelle avant
toute transmission numérique et traitement ultérieur.
Lorsque 1'on s'inté@resse uniquement & 1'examen de la
structure spectrale de la série observée aprés trans-
mission et non pas & la reconstruction de la série
originelle, on a montré (1), (2) qu'il existe des mé-
thodes d'estimation cohérentes. Cet article considé-
re considére les résultats obtenus par les estimés de
la densité spectrale de taille d'echantillonnage fi-
nie pour un processus temporel discret gaussien sta-
tionnaire a partir des observations d'une version
fortement contrainte.

On utilise comme estimateur de la densité spec-
trale celui proposé par Rodemich (3) pour les fonc-
tions non-linéaires des processus stochastiques gaus-
siens. Cet estimateur différe du lissage habituel du
périodogramme en ce que 1'on applique une fonction
non-linéaire aux estimés de la covariance avant de
calculer 1'estimé du spectre. Dans le cas fortement
contraint, la fonction non-linéaire est la fonction
sinus.

Dans cet article, nous présentons briévement les
résultats statistiques asymptotiques de (2) sous la
forme d'expressions pour la moyenne et la variance
asymptotiques et nous démontrons que 1'estimateur est
cohérent au sens de la moyenne quadratique. Nous
présentons aussi les -conclusions d'une analyse empi-
rique des résultats pour une taille d'échantillonnage
finie.

L'analyse empirique considére deux exemples,
1'un avec une densité spectrale a "bande étroite",
T'autre avec une densité spectrale & "bande large".
Dans les deux cas, on a engendré les échantillons de
séries temporelles & 1'aide d'un modéle autorégressif
a processus d'innovation gaussien. 0On a ensuite for-
tement contraint ces échantillons et calculé des es-
timés de la covariance. On a enfin calculé des esti-
més du spectre de taille d'échantillonnage finie pour
la version fortement contrainte et pour la version

- fortement contrainte avec application de 1a fonction
sinus aux estimés de 1a covariance. On montre la su-
périorité de la deuxiéme méthode sur un domaine de
variation de la taille d'échantillonnage en évaluant
une erreur quadratique moyenne en fréquence normaii-
sée entre la densité spectrale connue exactement et
les estimés du spectre.

SUMMARY

In a number of applications it may be desirable
to hard limit (one level of amplitude quantization) an
observed time series prior to digital transmission and
subsequent processing. If one is only interested in
examining the spectral structure of the observed
series after transmission and not in reconstruction of
the original series then consistent estimation methods
have been shown to exist [1], [2]. In this paper the
performance of finite sample size spectral density
estimates of a stationary discrete-time Gaussian
process from observations of a hard limited version is
considered.

The spectral density estimator used 1is that
- proposed by Rodemich [3] for nonlinear functions of
Gaussian random processes. This estimator differs

from the usual smoothed periodogram in that a non-
linear function is applied to the covariance estimates
prior to computing the spectral estimate. For the
hard limited case this nonlinear function is the sine
function. '

In this paper we briefly present the asymptotic
statistical results of [2] in the form of expressions
for the asymptotic mean and variance and proof that
the estimate 1is consistent in the quadratic-mean
sense. We also present the results of an empirical
investigation of finite sample size performance.

The empirical investigation considers two
examples, one with a "narrowband” spectral density and
one with a '"broadband" spectral density. For both
examples time series samples were generated using an

autoregressive model with Gaussian innovations
process. These samples were hard limited and
covariance estimates were computed. Finite sample

size spectral estimates were computed for the hard
limited version and for the hard limited version with
the sine function applied to the covariance estimates.
The superiority of the latter is demonstrated for a
range of sample sizes by evaluation of a normalized
frequency averaged squared error between the known
exact spectral density and the spectral estimates.
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I. INTRODUCTION

We consider the ©problem of estimating the
spectral density of a discrete~time stationary
Gaussian process from observations of a hard limited
version. In many applications it may be necessary to
hard limit (i.e., one level of amplitude guantization)
an observed random time series prior to digital
transmission and subsequent processing. In some
situations one may not be interested in reconstruction
of the original time series from the hard limited
version but only in estimating its spectral density.
The accuracy to which this spectral estimate can be
computed from the hard 1limited observations is
empirically investigated. We examine both a narrow-
band and a broadband spectral density example.

It bas previously been shown, see Brillinger [1]
and Gingras and Masry [2], that through the use of a
nonlinear transformation applied to the estimated
covariances of the hard limited process an asymptoti-
cally mean-square consistent estimate of the original
spectral density can be constructed. In this paper we
examine finite sample size spectral estimates formed
directly from the covariance estimates of the hard
limited series and formed using the nonlinearly trans-
formed covariance estimates. These estimated spectra
are compared with the exact spectral densities. We
also compute a normalized frequency averaged square
error as a function of the number of observations.

As indicated previously, a one-to-one transforma-
tion relating the covariance sequence {ck} of the

output of a zero-memory nonlinearity to the covariance
sequence {rk} at the input has been shown to exist for

a class of nonlinearities, including the hard limiter.
For the hard limiter case we have

r = 31n{(n/2)ck} . (1)
Thus, an estimate for r, based on N observations of
B k
the output is
rN,k = 51n{(n/2)cN’k} (2)
where EN K is the usual biased estimate of the output
b
covariance e This leads to an estimate @N(A) of the
input spectral demsity ¢(A) of the form
N-1
_ » T\
B0 = (/2m i 3 hN(k)31n[<2>cN’k]cos(k)\) (3)
k=1

where hN(k) is a covariance averaging sequence to be

specified below.

In Section II we briefly outline the asymptotic
bias and covariance properties of the spectral
estimate (3). In Section III we compare the perfor-
mance of (3) with that of a smoothed periodogram, via
Monte Carlo simulation, for two spectral density
examples. In particular we compare both estimates to
known exact spectral densities.

II. THEORETICAL RESULTS

We assume that the '"input" sequence X = {Xk}§=—m

is a real stationary Gaussian process with mean zero

and absolutely summable covariance sequence {rk}

(normalized with r, = 1). Then its spectral density

¢(A) exists and is given by

o) = (/2 3 re N (4)

k=~

Given a finite set of observations of the hard
limited process Y, we obtain an estimate for the input
spectral density ¢(A) as follows: first estimate the
output covariance sequence {ck} by

N- k|
DR IO A )
N,k j=1
0 k| > N-1

Then estimate ¢(A) by

N-1
bW = (1/2m){1+2 ZhN(k)sin[(g)GN’k]cos(k}\) (6)

k=1

where {hN(k)} is a covariance averaging sequence

generated as follows:
hN(k) = h(k/MN) s k= 1,2+

where MN

MN » o and MN/N > 0 as N » ®; the function h(t) is

is a sequence of positive integers such that

real, even, h(0) = 1 and

1
ste
)

|[h(t)| < comst./(1 + |t] , £€>0 . (7

For future reference we note that an estimate for the
spectral density Y(A) of the hard limited process Y is
given by

N-1
(M) = (1/2m) {1 + 2 Z hy (k)& jcos(kA)p (8)
k=1

The statistical properties of &N(A) are well known
{4]. Those of the input spectral estimate ﬁN(A) will

be presented next. The proofs of the statistical
results are contained in [2]. Similar results for
continuous time processes are contained in [1].

The bias of the estimate (6) is given by the
following theorem and its corollary.

Theorem 1. We have
N-1
E[$y(AW)] = (1727041 + 2 ) hy (k)7 cos (kA)
k=1
Lo
+ o{(MN/N) 2“’(5)} )
where the O0(+) term is uniform in A and
£, £ <X
afe) = (<% &= 3% (10)
L, e > %
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Corollary. If, in addition
o
D IPr <o p=1,2,0000q
k=-o

and h(t) is q times differentiable with bounded

derivatives then

el p,(p)

E[Gy(A)] = ¢(A) + 2: (;_? % ¢(p)(7\)
' M
p=1 N

£0 LMY +o {onm Sy (1)

Next we present the covariance for the spectral
estimate @N(A). In Theorem 2 below it is given in
terms of the «covariance of the output spectral

estimate &N(A) of (8).

Theorem 2. We have

covlBy (W), 8,01 = (727 covl(A), G, ()]
+O{(MN/N)[(MN/N)“(8) + (1/1~1N)%:|} (12)

the 0(+) term is uniform in A and p and a(e) is given
by (10). Since the output spectral estimate $N(A) is

a standard smoothed periodogram its asymptotic
covariance is well-known (see for example, [4, Theorem
5A1).

Corollary. We have

Lin(N/M)var (B, (0] = (V2617 [ 02 (0)de (143, )
N->o -00 ’

(13

where

B {1, for A = 0 (mod 27)

6 —_
0,A 0, otherwise

We note that the asymptotic variance of the input
spectral estimate @N(A) is identical to that of a

smoothed periodogram except for the multiplicative

factor (7!/2)2 introduced by hard limiting. The
corollaries to Theorems 1 and 2 imply the mean-square

consistency of the input spectral estimate ¢N(A) as
N,

Let V2 be the asymptotic normalized variance for
the spectral estimate, using (13)

var{{, (A)}
2 = 1im (1/2)% ——ZN—
N g (A)

~
It

o]

(MN/N)(H/Z)2 f % (t)dt . 14

00

1]

For the Bartlett lag window, which was used in the
empirical investigation, we have that

o

S r*vae = 2/3

-00

Fig. 1 illustrates the results of evaluating (14) for
a range of values for MN/N. In the next section we

will compare these asymptotic results with those
obtained empirically.

III. SIMULATION RESULTS

In this section X is a stationary Gaussian
process with zero mean, summable covariance sequence
{rk} and a spectral density function ¢(A); the process

Y is a hardlimited version of X. By the results of
[5], we are guaranteed that the covariance sequence
{Ck} for the Y process is summable and that the

spectral density Y(A) exists. We examine through
simulation the performance of finite sample-size
spectral estimates of the X process formed from
observations of the Y process for two spectral density
examples.

The example spectral densities wused in the
following empirxical investigation are based on finite
order autoregressive-moving average (ARMA) models.
This spectral model was chosen because of the ease of
generating time series data with known spectral
density, and because most useful spectra can be
modeled by a rational spectral density model. Two
autoregressive (AR) examples representing different
spectral characteristics were chosen. For the first
example the AR parameters were chosen so as to produce
a narrow band spectral density with a well defined
peak. The actual spectral density is illustrated by
Fig. 2(A). The second example was chosen to be a
broadband example, that is, a smooth spectral demsity
with a broad "hump" but no spectral peaks. See Fig
3(A) for the actual spectral density. .

For the empirical investigation the random time
series X was generated according to the following AR
model

X = aX

+
n 1"n-1 aX

2"n-2 oot apxn-p * en (15)

where the AR parameters Ja, P are specified below
j=1

for the two examples considered and the noise sequence

&, is a sequence of zero-mean i.i.d. Gaussian random

numbers with variance 082 obtained by applying the

Box-Muller tramsformation to uniform [0,1] random

numbers and scaling by the variance 082 For both

spectral examples ten realizations of the AR series
were generated; the first few hundred samples were
not used so as to eliminate transient effects. All
series were subjected to hardlimiting and sequences of
covariance estimates were computed using (5), for N =
1.024K, 5.12K, 10.24K, 20.48K, 40.96K, and normalized
by GN 0 Spectral estimates were computed with the
b

covariance transformation (6), and standard smoothed
periodograms were computed. The covariance averaging
function used for both estimates is referred to as the
Bartlett lag window and is given by

1 - |ki/M, Jk|] <M
h(k) = (16)
0 , Ikl > M

where M is the usual '"window parameter" that defines
the truncation point of the covariance secuence and
determines the '"resolution" of the spectral estimate.
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The parameter M was chosen empirically to be large
enough to provide adequate spectral resolution and
small enough so that the spectral estimates were
stable (i.e., small variance). The value used
throughout the investigation was M = 128.

To aid in the empirical comparison of the
spectral estimate (6) with the smoothed periodogram,

we estimated a normalized and frequency averaged
error. The estimate is defined as
M-1 2
e (B0 - 6] -
M

2
k=0 o7

2
In the results presented below, v~ was computed for
cach of the ten recalizations cf the AR scries and the

—2
values presented, Vv,
realizations.

are an average over all ten

A. The AR (4) Example - Narrowband Spectral Density

The parameters chosen for this example are:
p=é a; = 1.60 a, = -1.30 ay = 0.80
a, = -0.40 Uz = 1.0.
£
The actual spectral density for this example is

illustrated by Fig. 2(A). We see that there is a well
defined peak in the spectrum at about 0.147m, a "hump"
at about 0.3m and fairly rapid fall off above 0.3m.

Fig. 2{(B) represents a smoothed periodogram (M = 128
and N = 20.48K) for the hardlimited AR series. We see
from the periodogram that the peak 1is quite

discernible but that the "hump" at 0.37 is not and
that the roll off above 0.37m is not discernible. Fig.
2(C) represents the spectral estimate (M=128 and
N=20.48K) obtained using the covariance transformation
(6). TFor this case we see that the estimated peak
more closely represents the actual peak, the "hump'" at
0.3n is discernible and the estimate falls off above
0.31 at a rate about as rapid as the actual spectral
density but with considerable variance above O0.7m.
The spectral estimates of Fig. 2(B) and (C) are
typical of the ten computed for this example.

Fig. 4 illustrates the results of estimating the

normalized and frequency averaged error for both
spectral estimates. The curves of Fig. 4 are the log
of 32 for a range of sample sizes N. The top curve is

the result for the smoothed periodogram, and we see no
decrease in the error as N increases. The bottom
curve is the result for the spectral estimate (6), and
we see that the error decreases significantly as N
increases.

B. The AR(2) Example - Broadband Spectral Density

The parameters chosen for this example are:
= - - . 2 _
p=2 a, = 0.75 a, = 0.5 08 =1.0.

The actual spectral density for this example is
illustrated by Fig. 3(A). We see that the spectral
density is very smooth with a broadband "hump" at 0.3m
and a rapid roll off above 0.3m. Fig. 3(B) represents
a smoothed periodogram (M = 128 and N = 20.48K) for
the hardlimited AR series. We see from the period-
ogram that the broadband "hump" at 0.3n is discernible
but that the roll off of the "tail" above 0.37 is not
well represented. The estimate is biased by as much
as § - 10 dB above the actual spectra. Fig. 3(C)
represents the spectral estimate (M=128 and N=20.48K)
obtained using the covariance transformation (6). For

this case we see that this spectral estimate repre-
sents the actual spectral density very well for both
the broadband "hump'" and the "tail" roll off.

Fig. 5 illustrates the results of estimating the
normalized and frequency averaged error for the
spectral estimates. As in the previous example, the
top curve is the result for the smoothed periodogram
and there is no decrease in estimate error as N
increases. The bottom curve is the result for the
spectral estimate of (6) and the error again decreases
significantly as N increases.

IV. CONCLUSIONS

We note that the overall magnitude of the error
is smaller for the broadband example than for the
narrowband example. Upon comparing the results of
Figs. 4 and 5 with the asymptotic results of Fig. 1 we
see that the error obtained for the narrowband example
does not approach the asymptotic results, while that
for the broadband example is quite close.

The simulation results indicate that for the hard
limited situation reasonable finite sample size
spectral estimates can be obtained for the original
series. While the number of examples was limited, for
both cases the spectral estimate with the sin(-)
transformation applied to the covariance estimates was

clearly superior to that of the standard smoothed
periodogram.
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Figure 1. Asymptotic normalized variance calculated

using (14).
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Figure 2. Spectral density and spectral estimates
(M = 128 and N = 20.48 K) for the narrowband AR
example: (A) exact spectral density, (B) smoothed
periodogram for hardlimited series, (C) spectral

estimate for hardlimited series with covariance trans=-
formation (6).
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Figure 4. Normalized and frequency averaged error for
the narrowband AR example (M = 128): (A) smoothed
periodogram for hardlimited series, (B) spectral
estimate for hardlimited series with covariance

transformation (6).
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Figure 3. Spectral density and spectral estimates
(M = 128 and N = 20.48 K) for the broadband AR
example: (A) exact spectral density, (B) smoothed
periodogram for hardlimited series, (C) spectral

estimate for hardlimited series with covariance trans-
formation (6).
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Figure 5. Normalized and frequency averaged error for
the broadband AR example (M = 128): (A) spectral
estimate for hardlimited series (smoothed
periodogram), (B) spectral estimate for hardlimited

series with covariance transformation (6).
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