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RESUME

Résumé: Cet article est consacré & une étude exper-
imentale comparative de trois meéthodes de détection
Bayesienne qui prennent en compte une information
contextuelle modélisée par une chaine de Markov du
premier ordre observée dans un bruit aléatoire. Le
critére utilisé est celul de la minimisation de la prob-
abilité d’erreur par symbole. Les méthodes envisagées
ressortissent de la théorie statistique de la décision com-
posite appliquée & des séquences finies d’observations.

De maniére plus précise, les trois méthodes sont

i) la technique séquentielle composite (temps-réel)
fondée sur la maximisation de la vraisemblance
du signal compte tenu de la séquence des obser-
vations passées et présentes;

4} la technique séquentielle composite & décision
différée dans laquelle la décision est effectuée avec
un retard fixe par rapport & *observation;

#11} la technique composite globale fondée sur la max-
imisation de la vraisemblance du signal compte
tenu de la séquence compléte des observations.

Ces techniques ont été fréquermnment utilisées dans le
domaine de la reconnaissance de texte et de la parole
et se sont montrées aussi d’une efficacité intéressante
dans le domaine du traltement d’mages. Toutefois, la
littérature abonde en constatations discordantes quant
a leurs performances et complexités respectives. Cest
la question que nous nous proposons d*lucider.

Nous montrons que dans des conditions expérimentales
normales, la méthode & décision différée offre sans con~
teste le meilleur compromis performance—complexité,
et n’est supplantée par la méthode composite globale
.que dans des cas pathologiques peu susceptibles d%tre
rencontrés dans les applications.

Une explication intultive de ce phénomene est proposée.

SUMMARY

Abstract: This paper reports and comments on exper-
imental results obtained with three contextual decision
rules for minimum probability of error per decision op-
erating under the first-order Markov chain assumption
for the sequence of class labels observed In memoryless
nolse. The rules belong In the realm of the statistical
decision theory and are characterized by the range of
their look-ahead capabilities.

Specifically, the rules we are interested in are:

¢} the sequential compound decision rule based on
the maximization of the joint likelihood of the
signal and the sequence of past and present mea-
surements;

i1}, the sequential compound rule with fixed-lag look-
ahead in which the decision is postponed until
a fixed number of measurements have been ac-
quired;

¢} the overall compound rule based on the maxi-
mization of the joint likelihood of the signal and
the entire sequence of measurements.

These techniques have been extensively applied to text
and speech recognition and are currently being explored
with image processing applications in mind. However,
the literature abounds with contoverslal statements re-
garding their relative merits and drawbacks. It is the
issue which is addressed here.

It is found, that under normal experimental eonditions,
one-step look-ahead offers the best tradeoff between
performance and complexity, The forward-backward
algorithm which constantly takes full lock-ahead into
account, is found superior only in rather pathological
situations which are very unlikely to ever be encoun-
tered in practical applications,

An intuitive justification of these findings is proposed.
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1. Introduection

The assumption of Markov dependence among pattern
classes is one of the most effective ways of using contextual infor-
mation in pattern recognition [1]. In addition to the information
couveyed by the class-conditional probability distributions of
feature vectors, contextual decision making algorithms exploit
the information encoded in the probability distribution govern-
ing the temporal sequence of pattern-class identities. In this
paper, we concentrate on algorithms which exploit both these
sources of information for the purpose of achieving minimum
probability of error per decision. (The Viterbi algorithm and
its many variants [2] are excluded from consideration as they
are designed to achieve minimum probability of error per se-
quence of decisions. Moreover, they are fairly well documented
in the literature [3]}.

Minimum probability of error under the Markov chain as-
sumption can be achieved with three kinds of algorithms which
can be characterized by their look-ahead capabilities. To be
precise, let {X*,--+, X",---, X7} designate an ordered sequence
of observed feature vectors, and {w*,---,w",--+, w7} designate
the corresponding ordered sequence of unknown, pattern-class
labels or interpretations.

Algorithms in the first category use no look-ahead. Fea-
ture measurement and decision making are synchronized. By
this we mean that the decision on w’ is made using all the past
feature vectors X1,---, X! and the current feature vector X7.
A classical result in the statistical theory of compound deci-
sions states that, for feature vectors observed in memoryless
noise (see Sec. 2.1) minimum error probability per decision is
achieved by the sequential compound decision rule of (1)

W = wi if
w;:argmaijP{w’=w,',X1,---,X’}, r=1,---,T
(1)
where " designates the ‘estimate’ of w at time 7 and w; is one
of the ¢ possible class labels wy, -+, w,.

Algorithms in the second category use some fixed look-
ahead. With n-step look-ahead, the decision on w” is postponed
until the (7 + n)th feature vector has been acquired. With T
fixed, the decision rule for minimum error probability is given
by (2).

W =w; if
{ argmax,, P{w’ = wi X oo XTIy 1< r<T —n,
wy =

argmax, P{w’ = w; X',---, X7}, r>T - n.

(2)
In what follows, we concentrate on n = 1 for reasons that will
soon become apparent.

Algorithms in the third category use the largest possible
look-ahead by postponing any decision until the entire sequence
X%, .-+, X7 has been acquired. The corresponding compound
decision rule is given by (3).

wr = Wy if

(3)

Wy = argma.ijP{w’ =w;, XYY XTY, r=1,---,T.

It is a remarkable result that, under the Markov chain assump-
tion for the sequence of class labels, the probabilities in {1)—(3)
can be computed in linear time.

The decision rule of (1) was first proposed independently
by Raviv [4] and Abend [5]. Since then, it was used by too
many researchers to be cited here. The rule of {2} was also
proposed by Raviv [4]. In spite of Raviv’s experimental results
showing a considerable improvement over (1), the look-ahead
technique does not seem to have been widely used (and goes
unnoticed in Haralick’s recent review [1}). Quite surprisingly,
the decision rule of (3) does not seem to have appeared in the
open pattern recognition literature until the brief outline by
Haralick [1] of the unpublished BAMPS algorithm of Lehan,
A different formulation of essentially the same algorithm can
be found in Devijver [6]. However, (3) has been applied for
more than a decade in information theory circles where it is
used for optimal decoding purposes (see, e.g., Bahl et. al. [6]).
It is closely related to the work of Baum [7] which has led to
quite successful learning methods [8], particularly in the field of
speech recognition [9-12].

It is evident that the amount of information used by the
decision rule increases with the look-ahead range. Intuitively,
one should expect the performance to improve accordingly. It
goes without saying that improved performance can be achieved
only at the cost of increased time and space complexities. In the
case of {3}, the increase is quite substantial as we shall see in
Sec. 2. However, our previous experience with these algorithms
had indicated that, on a comparative basis, the performance of
the compound decision rule did not level up to our expectation.
In other words, the substantial effort involved in implementing
(8) used not to return very high dividend. Therefore it was the
purpose of the computer simulation reported here to elucidate
the question of whether our deceiving results were to be at-
tributed to a lack of accuracy of the assumed Markovian model
or to the intrinsic behavior of the compound decision rule.

Our experiments provide a clear-cut answer. They give ev-
ery indication that under “normal experimental conditions” the
assumption of a first order Markov model does prevent us from
using the information in the sequence of future measurements
X t1,...  XT beyond that which is encoded in the distribution
of X7*1, Significant improvement over the one-step look-ahead
mode of decision occurred only in fairly pathological situations
which are most unlikely to be encountered in practice.

A convenient feature of the Markov model is that it read-
ily enables the computer simulation of stationary random se-
quences with prescribed temporal dependence. The Markov
chain model is formalized in Sec. 2.1. The parametric family
of Markov sources used in our experiments is specified in Sec.
2.3. A brief outline of the algorithms used to implement (1)~(3)
can be found in Sec. 2.2. Experimental results are presented in
Sec. 3 for various values of the Markov source entropy and the
(non-contextual) signal-to-noise ratio. An intuitive justification
of our experimental findings is attempted in Sec. 4.

2. Models and Algorithms

2.1. The theoretical model

We assume that the pattern-class generating mechanism
can be modeled by a discrete parameter, discrete time, first
order, homogeneous Markov chain with state space {wy,- - -,w.},
[13]. We write w™ = w; to indicate that the process is in state w;
at time 7. The Markov chain is specified in terms of an initial



151 L\/

A comparative study of decision making algorithms in hidden Markov chains

1 —

state distribution P; = P{w! = w;}, § = 1,..
of stationary state transition probabilities

.,¢ and a matrix

P,‘j = P{wf-H = wj|w" = w,-},

for 1 <1i,j<eand 1 € 7 < T - 1. The Markov property yields
the factorization

WY =P L P, ()

r=1

p{wl,...

The random process associated with the states is repre-
sented by c probability distributions p;{X) = p(Xlw;), 1 £
j < ¢. We make the assumption that X',---, X7 are state-
conditionally independent, or that X’s are observed in mem-
oryless noise. This assumption yields a second factorization,
vis.,

P(XY - X! wT) = ]i[lp(X’[w'). (5)

In what follows, we assume that the initial and transition
probabilities of the Markov chain as well as the state-conditional
distributions are known to us.

2.2. The algorithms

In this section, we adopt the very elegant formulation of
Baum [7]. The reader should be warned that it may not lead
to the most efficient implementation. (See [10] for considera-

tion of implementation details in the framework of the mixture
identification problem.)

Under the assumptions just introduced, the likelihood L
of a X-sequence of observations X1,..., X7 is given by

p(X',-oe, XT)
- 5

B Pt e
x TE[_:PW“ W)X | ) ©

c I-1
= E P;lp;l(Xl) H Pirir+1pir+1(xr+l)'

f1,mir=1 r=1

This follows readily from (4) and (5).

Let #(i) = P(w" = w;, X,--+,X"), { = 1,...,¢c. Thus,
#(i) = Pipi{X"), and 7 (i) can be computed inductively for-
ward by the recurrence

5. = {Rp.(X‘)

for r =1,

(7)

Yo H1(§)Prpi(X7) for2<7 <T.
Let B,(5) = P(X™*,. .., XT |w" = w;), i = 1,...,cand Br(i) =
1, Vi. Then, B,(i) can be computed inductively backward by

the recurrence
forr="7T,

1
B,(i) = 8
@) {z:;.zl Pupi(X)Boal) for T-13731 O

Now, the remarkable thing about these relationships is that [7]

L= 2: 7,()8,(5) (9)

identically in 7. The proof that (9) is equivalent to (6) involves
nothing more than the distributive law.

Let us note that #.(j) is the probability required for ap-
plying the decision rule of (1). Thus (7} describes one possible
implementation of the sequential compound algorithm. On the
other hand, it is readily seen that 7.(j)B,{) is the probability
required for applying (3). Thus, one computational scheme for
implementing the compound decision rule amounts to:

i) a forward stage which consists in computing the 7 val-
ues using (7); these probabilities have to be stored for
use during

ii) the backward stage which consists in computing the B
values using (8) and forming the products % {5)B.(Jj)
which are then used in (3).

This technique is often referred to as the “forward-backward”
algorithm. From now on, we shall adhere to this convention.
It is evident that the forward-backward algorithm is twice as
costly as the sequential compound one. Moreover, it requires
extra storage for ¢(T — 1) ¥ values.

Let §,(i) = P{w" = w, X*,---, XM} i=L...,e, 7 =
1,...,T =1, as required by (2) for n = 1. Readily, the one-step
look-ahead technique can be implemented by the recurrence

F(8) S5y Piips (X711 forr=1,...
7(2) forr=T.

1T_1’

5=

(10)

The one-step look-ahead technique is slightly more costly
than the sequential compound algorithm and requires tempo-
rary storage for ¢ 7 values. At the risk of belaboring the ob-
vious, let us point out that—with or without look-ahead—the
sequential compound algorithm can be implemented in real time
while the forward-backward algorithm must be implemented off
line.

2.3. The experimental model

In the experiments described hereafter, the Markov source
was selected to be a simple, cyclic version of the Bakis model of
speech production [14]. Specifically, we adopted a 6-state model
with transition probabilities parameterized by p, 0 < p < 1,
according as

1- o .
—22 for i,4y =i,
P;7"1+1 = p

1_—_22 for i, =%, +2mod 6

for i,41 = ¢, + 1 mod 6

(11)

Vi, € {1,...,6}. The stationary distribution of this source is an
equiprobable distribution over all states. It was also taken as
an initial distribution in order to avoid disruptive edge effects.
Given p, the entropy of the source is given by

H=(1-p) - p)log(1 - p),
where logarithms are to the base of 2 and H is given in bits.
The entropy function H(p) is shown in Figure 1.

—plogp — (1 (12)

The generation of a pseudo-random Markov sequence was
performed as follows:

] An initial state was selected randomly with equal a pri-
ori probability for each possible state.
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Figure 1: Entropy function for the experimental Markov source.

i) The selection of subsequent states was performed by
partitioning the unit interval proportionally to the com-
ponent of the row of the transition matrix indexed by
the previous state, generating a randon number, and
chosing the new state according to the subinterval in
which the number felt.

The state-conditional distributions were chosen to be 2-
dimensional normal, {.e., p;(X) ~ N(p;,I). I is the 2 x 2 iden-
tity matrix. Mean vectors g;’s were located at the vertices of
a regular hexagon inscribed within a circle of radius R. Ignor-
ing context, the signal to noise ratio (SNR) was measured by
the ratic of the traces of the between- and within-class covari-
ance matrices. In our configuration, SNR = R?. Generation
of pseudo-random bivariate normal data was performed in the
standard way.

From this choice for an experimental model, it turns out
that experimental results can be characterized by only two pa-
rameters, namely p and R, or equivalently, H(p) and SNR.

3. Experimental Results

Each experiment consisted in generating 10® random se-
quences of length T' = 10 according to the methods described
in Sec. 2.3. [Experiments with longer sequences did not pro-
duce noticeably different results. It should be noted that all
three algorithms perform in exactly the same way in classify-
ing the last element in each sequence, As the results reported
are obtained by averaging the errors over all elements, short se-
quences induce a sligth comparative bias which is detrimental to
the best algorithm, namely, forward-backward.] Classifications
were performed using the decision rules of (1)—(3) combined
with the algorithms of Sec. 2.2. For comparison purposes, clas-
sification was also performed with a non-contextual Bayes rule.
Classification results are illustrated in the form of error-reject
curves (15].

T T T
0.075 0.100 0.125

Reject Rate

T T
0.000 0.025 0.050 0.150

Figure 2: Error-reject curves, high entropy, high SNR.

A typical example of the results obtained is illustrated by
Fig. 2. In this example, the SNR was moderately high, SNR =
16, which corresponds to a minimal error probability less that
0.05 when the Markov source information is not used and the
reject option disabled. The entropy of 1.371 is also moderately
high, (max, H{p) = 1.585), though the source is already quite
skewed with a probability p = 0.6 of direct transition to the
next state in the cyclically ordered sequence of states.

The curves shown in Figure 2 illustrate the effectiveness
of contextual decision rules—something Raviv [4] had already
done long ago—but above all, they show the definite failure of
the forward-backward algorithm to improve in any significant
way over the performance achieved under the one-step look-
ahead mode for the particular model selected in this experiment.
However, as stated above, the results in Figure 2 are a typical
example of the behavior of the three contextual rules over a
wide range of values for the parameters p and R.

The effectiveness of the forward-backward technique be-
comes apparent only at low signal to noise ratios. Figure 3
displays the results of an experiment in which the entropy was
the same as in the previous example while the SNR was low-
ered down to 5.76 (for an error-rate of the order of 0.23 for the
noun-contextual rule with no reject). It is plain, however, that
the improvement achieved by the forward-backward algorithm
still belongs in the realm of “second-order” effects.

It is worth emphasizing that, however small, differences
between performance figures are statistically significant due to
high correlation. In actual fact, minute examination of individ-
ual errors revealed that these differences arise from the more
powerful algorithm being able to correct some of the errors in-
curred by the less powerful one. In this sense, sets of individual
errors are nested.

Finally, we were able to lay bare the potentiality of the
forward-backward algorithm by retaining the low value of 5.76
for the SNR as in the previous example and turning the Markov
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Figure 3: Error-reject curves, high entropy, low SNR.

source into a fairly skewed one with a low entropy of 0.569
bits (corresponding to p=0.9). This is illustrated by Figure
4. It is evident that these experimental conditions are quite
unnatural and are very unlikely to be encountered in practical
applications.

Figure 5 displays performance ratios [non-contextual {nc),
sequential compound (sc), and one-step look-ahead {la) versus
forward-backward (fb)] versus H{p) for p in the range [0.4,
0.95] and an SNR of 5.76. Readily, these curves lead us to three
conclusions:

i) The lowest the entropy of the Markov source, the most
effective the contextual decision rules.

4} Using one-step look-ahead yields significant improve-
ment at fairly low computational costs. [In this re-
spect, it seems worthwhile to recall that in Raviv’s ex-
periments [4], one-step look-ahead under a first order
assumption appeared superior to the sequential com-
pound rule {with no look-ahead) under a second order
Markov chain assamption.|

i} In terms of classification performance and under nor-
mal experimental conditions, the forward-backward al-
gorithm can hardly do better than the one-step look-
ahead method.

4. Comments

Our experiments have shown that, under “normal exper-
"imental conditions”, the forward-backward algorithm does not
improve in any significant way over the one-step look-ahead
mode of decision. By the virtue of the computer simulation,
this counter-intuitive observation may no longer be attributed
to a lack of accuracy of the assumed Markovian model. The
justification must therefore be searched among the properties
of the model. A precise analysis of the problem appears to be
extremely difficult and will not be attempted here. Though, it
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Figure 4: Error-reject curves, low entropy, low SNR.

is our hope that the following considerations may help clarify
the issue somewhat.

It is a well known property that a first order Markov chain
is also a first order Markov process—not necessarily a chain—in

- the reverse direction {16]. This property implies that for r < T,

P{wr|wl’ _,,’wr—l,wr+ly._‘

= P{w|w!, -+, w w1,

) (13)

In plain words, Eq. (13) shows that conditioning on the one-step
look-ahead w-sequence is equivalent to conditioning on the en-
tire w-sequence. [Equation (13) has a direct extension in terms
of n-th order Markov chains and we have every reason to believe
that the right thing to do under an nth order assumption is to
use the n-step look-ahead decision rule prescribed by (2).]

It is equally well known that (13) applies only when the
conditioning sequence is known exactly. When, as in our case,
all that is known—or estimated—are the probabilities of the
possible conditioning sequences, the actual outcome of the “ter-
minal” sequence w2, ..., wT, does affect our estimation of w’.

The situation is further aggravated by the fact that what
we do observe is not the w-process but the X-process where X's
are probabilistic functions of w’s through their class-conditional
probability distributions. Hence, in general, the X-process is in
no way Markov and there is no analogue to (13) when condi-
tioning is in terms of X variables. The analysis of the conditions
under which a function of a Markov chain is again Markov is
known as the Iumpability problem [16] (see also [17] for a re-
cent reference). Unfortunately, the theory of lumpability has
not reached the stage where it can handle such complex prob-
lems as the one considered here.

These theoretical hurdles not accounted for, let us briefly
consider the case of a high signal to noise ratio. The knowledge
of X! is most of the time highly indicative of the class to
which it belougs. Hence, it looks as if w™*! were almost exactly
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Figure 5: Performance ratios versus Markov source entropy
(SNR = 5.76).

known and (13) approximately applies in most cases thereby
disabling the capabilities of forward-backward to improve over
one-step look-ahead. Very doubtful cases occur rather rarely.
So the full potentiality of forward-backward is exploited equally
rarely. Moreover, only a fraction of the “would be incorrect
decisions” are turned into correct decisions. The net result is
that the improvement reduces to second order effects. At low
signal to noise ratio, the situation is someliow reversed and the
forward-backward algorithm becomes more efficient.

In comparison, the role of the source entropy is more ap-
parent. A source with high entropy assigns low probabilities
to a large number of possible sequences of class labels, while a
low-entropy source assigns high probabilities to a small namber
of possible sequences. When this information can be taken into
account—that is, at low SNR—it is quite natural that low en-
tropy should lead to more significant improvement. Although
quite intuitive, these considerations are born out by our exper-
imental results.
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