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RESUME

Ce papier presente la contribution de 1'auteur a'
1'Analyse Temps-Frequence des Signaux({achevée en 1979
au Centre de Recherches d'ELF-Aquitaine, PAU). Bien
que déja' publiés au 7% GRETSI (1979) [7], ces
resuilats ont &té largement incompris. Nous presentons
ja forme generale des Représentations Temps-Fréquence,
obtenue d'apres le travail de L.Cohen in 1966 [3],
montrons comment 1'auteur a &té amené a choisir en

1978 la Representation de WIGNER-VILLE (WVD) aprds une
Etude comparative. Les propriétés de la
Representation de Wigner-Ville sont listées et un
simulateur numérique{obtenu en 1978) basé sur une
version numérique de la Representation de Wigner-Ville
est presenté. Nous soulignons que la programmation de
1'analyseur WVD est directe et aucun probleme
d'Aliasing n'apparait si on respecte les bases de la
theorie du signal. De plus, on montre que les
artefacts créés par lamethode disparaissent quand on

utilise le signal analytique.

SUMMARY

This paper presents the author's contribution to
Time-Frequency Signal Analysis(achieved in 1979).
Although already published in French in the 7th Gretsi
(1979) [Ref. 71, these results have been misused and
misunderstood. We present the general form of the
Time-Frequency Distributions, derived from the work
of L. Cohen [3], and show how the author was led in
1978 to choose the WIGNER-VILLE Distribution, WVD

after a comparative study.

The properties of the WVD
are listed and a digital simulator (implemented in
1978) based on a Discrete-Time Version of the WVD is
presented. We emphasize that the computation of a
Discrete-Time version of the WYD is straightforward
and that no aliasing occurs when computed correctly
Moreover, we show that low~frequency artefacts
created by the method are removed by using the

analytic signal.

This work is currently supported by the "Australian Research Grant Scheme"
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INTRODUCTION

In the case of stationary signals, i.e. signals whose
spectral content does not vary with time, we can

obtain an estimate of the signal energy distribution
versus frequency by considering any piece of
sufficient length of the signal and taking, for
example, the square of its Fourier Transform modulus.
The frequency resolution that is obtained depends on
the length of the window used to obtain the piece of
signal.

However, in many domains such as sonar, communications,
geophysics,..., signals to be analysed are
characterised by a variation of both amplitude and
frequency with respect to time. It is obvious that,
for such time-varying signals, a temporal or a
spectral analysis cannot easily display suitable
information.

Several different approaches have been used to deal
with this situation. The Time-Frequency Distribution
(TFD) in taking account of both variables, time and
frequency, allows to distribute the energy evolution
of the observed phenomena in a time-frequency domain

and consequently gives a solution to this problem.

4 el

1. TIME-FREQUENCY DISTRIBUTIONS
1.1 Definition
Many authors have defined different time-frequency

representations of signals [6]. It was then shown by
L. Cohen in 1966 [3]{and later by B. Escudie, and

J Grea [12] [13] that all the possible definitions may
be unified in a general formulation:

+o0 4o +x |
D(’C,f)=f_m f_wf_meJZﬂn(u—t).W(n,T).z(u+—;-).z*(u ——;—) .

.e'jznft.dn.du.dT

involving a weighting function w(n,t) such as:

wWe{PY={w}(n,t) M (n,t)=w*(-n,-t); W(n,t)|swlo,0)=1}
and where z ¢ L2(C) defines the analytical signal

associated to the real signal s ¢ L%(R).

z(t)=s{t)+j H[s(t)] H=Hilbert Transform

{P* is usually refered to as Cohen's class.

w(n,t)= 1 defines WIGNER-VILLE Distribution (WVD).

A simple relationship Tinks this latter to all other
TFD's.
positive or negative, and therefore can't be

As a general rule, the TFD has real values,

attributed any physical significance of density in the

time-frequency domain. However, a condition of

p(t,f) positivity exists [6] and leads to two possible

forms of p(t,f) and their linear combinations:

- the “"sonagramme" which is an envelope quadratic
detection after a selective filterbank centred
around the frequencies nfO, n=1, N [5].

- the "Moving Window Method" (MWM) or short Time

i

Spectra which is a spectral anaiysis of a weighted

o33

slice of signal [5].
Both use the sample principle: it is an evolving
analysis versus frequency in the first case and versus

time in the second.

1.2 TFD and Characteristic Parameters of a Modulated

signal

p{t,f) first order Moments yield the instantaneous
frequency fi(t) and the delay time rg(f) of the signal
if the function w(n,t)verifies the following conditions
[6].

v _ W - Ml (f)=19(f)
anlo,o %Tlg,0
w(n,o0) = cte ML(t)=Ff.(t)

w(o,1) = cte
This property is very important as it enables one to
obtain the Time-Frequency laws of a signal by
averaging its TFD.
Unfortunately, these conditions are not fulfilled for
the positive TFD's. But they are verified by the

Wigner Distribution and Rihaczek Distribution (6] {9].

2. CHOICE OF A TFD
A comparative study between the most usual TFD's has

been conducted {3]. The test signal used is a linear
frequency modulated signal emitted by a vibrator in
seismic prospecting, in the frequency range: 10Hz-250Hz.

2.1 Comparison between "Rihaczeck Analysis” and "Wigner
Analysis

Rihaczeck's Distribution of a signal s(t) is defined

by: 4]

e—Zjﬁft

pR(t,f)=Re{Z(t)Z*(f) }

where z(t) is the analytic signal associated with s(t).
Z{f} is the Fourier Transform of z(t) and Re means

real part.

The analysis of the test signal shows that the
Rihaczek's TFD does not let the signal's instantaneous
frequency directly appear, but offers numerous
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oscillations which render the reading of the -if Z{t)=o for t<T; and t>T,, then W(t,f)=o for t>T,

Representation very difficult [7]1 [9]. and t>T,

However, the WIGNER Distribution exhibits an amplitude -if 2{f)=0 for f<f, and f>f,, then W(t,f)=0 for f<f,

concentration around the modulation law, which is so and f>f,

much the better than the BT product (Bandwidth «the first-order Moments of the WD given fi(t),

Duration) of the signal is high (BT>5) [10]. instantaneous frequency and t_(f), group de]ay*

2.2 Comparison between "MWM" analysis and "WIGNER <1 y(t)=s(t)*h(t), then we have:wy(t’f)=w£t’f%t)wh(t’f)
Analysis *= convolution

"MWM" corresponds to the most intuitive method of -reversibility of the Wigner Distribution: we can

analyzing a signal in the time-frequency plane: it reconstruct s{t) as follows: [8]

computes power spectra of weighted slices of the too 1t :
o b Jjenft . _ -

signal: [5]. L[LH(5),f) e .dt=z(t).Z*(0).

Thus, the WD contains and conveys all the information

(t,f)=[f_::°z(u).P(u-t).e_JZ"fu.dul2 vehicled by the signal. No information is lost.

For the discussion of those properties, see [8] and

OMWM
By definition, such a short-time analysis is local
and its resolution is fixed by the analysis width. [14]. In the most general case, an accurate study of
WD needs simulations. That is why numerical studies
have been done using the Fast Fourier Transform [7] [8].

A theoretical study has explained in each case the WD

Moreover, it is well-known that the analysis induces
a bias on the estimation of the time-frequency Taws
of the signal [9] [10]. .
Isoamplitude curves pw(t,f)=cte are ellipses, the behaviour.
major axis of which characterises the time-frequency
4, COMPUTATION OF THE WIGNER DISTRIBUTION

4.1 Introduction

The computation of its discrete-time version was
achieved by the author in 1978 [61, published first in

11979 [7] and explained again in several international

laws of the signal for values of the BT product higher

than 5 [10]. Isoamplitude curves pMWM(t,f)=cte are
also ellipses, but their major axis direction and
resolution depend on the equivalent analysis duration

A. The optimum analysis width is defined by the
conferences [10].

We emphasize here that the Wigner Distribution is
straightforward to compute, and that no aliasing is

relaxation time Adfi/dt. However, even in this
optimum case, MWM resolution remains Tess accurate

than WD's [10].
created by the method.

2.3 The Choice

Thus,the Wigner Distribution appears as a fruitful 4.2 Why Aliasing is not a problem

The Wigner Distribution is expressed as follows:

representation of signals in the time-frequency plane, I, s
Wit F)=72(t+ 5).2%(t- ) e jerfr g

as it has a better resolution and is independent of 2
any analysis width. =F.F. {z(t+ %).z*(t- %)}
We have therefore built an interactive simulator of (F.T. = Fourier Transform)

time-frequency analysis using the WIGNER Distribution

able to analyze any signal [6] [9]. where z{(t) is the analytic signal associated with the

real signal s{t) as follows:

3. PROPERTIES OF THE WIGNER-VILLE DISTRIBUTION 2(t)=s(t)+j.H[s(t)],
It is defined by:

H=Hilbert Transform

Wit )=z (t+ %).z*(t- §Q.e-j2"fT.dT s(t) is assumed to be time-iimited and to have a large
BT (Bandwidth x Duration) Product.
In practise, the analytic signal is calculated in the

Previous studies have shown that the WIGNER

DISTRIBUTION exhibits some very interesting properties

.with regard to time-frequency signal analysis [7] [8]. frequency domain, using the following property

Here are the most important: Z(f)=2. S(f) , T positive

M(t,f) is real for all (t,f) = o otherwise

-spectral density: L::>w(t,f).dt=|2(f)]2 where Z(f) and S(f) are respectively the Fourier
-instantaneous power: L:jw(t,f).df=]z(t)|2 Transforms of z(t) and s(t). Its discrete timeﬁversion
+signal energy: {:j Lf: W(t,f).dt.df=E, js: W(n.at,k.af)=W(t,f) where t and f are respectively
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the time sampling interval and the frequency sampiing

interval chosen correctly.

+o0

Win,k)= ¢ z(n+ g&.z*(n— g).e'jZHkm
m:_oo
= D.F.T.[z(n+ %).z*(n— %)].

The current variable here is now g»and n can be
considered as a shift (or delay). The D.F.T. goes
from time m to frequency k.

Using the scale property of the F.T. Yields

W(n,k)=D.F.T.[z(n+0).2%(n-0)]
8 - »2k

Suppose now that fmax is the highest frequency
component of the incoming signal. Obviously(it is only
a scaling property of the Fourier Transform, discrete
on continuous),the calculation of the WD requires the
nax for Z(EJ, but is
quite compatiblie with the knowledge of frequencies up

knowledge of frequencies up to 2.f

to f .. for z{).

*another interpretation

Suppose we have the sequence x{(n) sampled at twice the
nyquist rate, N samples. A1l information is contained
in these samples. However, a characteristic of the
Wigner distribution is that it requires the knowledge
To solve this problem
But it is not

necessary because another solution is interpolating.

of the values inbetween x(n+k).

an obvious solution is oversampling.

Our program incorporates an automatic interpolation in
the calculation of the analytic signal without loosing
or adding any information, by adding N zeroces to the
result of the F.F.T. of the original real sirnal.

The computer program works then on an analytic signal
with 2N samples.

4.3 Importance of the Analytic Signal

1)Finite Duration: In general, if s(t) is time-1limited,
there is no reason why z(t) should have the same

property. However, the signals considered are assumed
to have a large B.T. product (B=bandwidth, T=duration).

In this case, if the real signal is:
s{t)=a(t).coso(t)

the use of Bedrosian's theorem yields the following
[5]3 ua
Z(t)=s(t)+j.H[s(t)]=a(t)_ej¢(t)

approximation:

where H denotes the Hilbert Transform.

Then if s(t) is time-limited, and if B.T. is large,
then a time-limited z(t) is a reasonable approximation.
Moreover, it has to be said that in any case, the real
part of the analytic signal z(t) remains(obvicusly)
time-limited.

2)Artefacts in the Wigner Distribution: When one does

not use the analytic signal z(t), but the real signal
s(t).

We showed as early as 1979 that the Wigner Distribution
creates low-frequency artefacts in the (t,f) domain
when one does not use the analytic signal [9]*. They
are caused by cross-products between positive and
negative frequencies. This is illustrated in Figure 3

and 4 of the paper Eusipco 1983 [16]

5. WIGNER ANALYéIS OF MODULATED SIGNALS

The analysed signals are real, causal, almost time-and-
bandlimited, of finite energy, centered (S{f=0}=0) and
verify BEDROSIAN's conditions (BT>>1). They are

expressed by: s{t)=a(t).cose(t), in which case, the

analytical signal associated z(t) is expressed as:
z(t)=a(t).ej¢(t)

and therefore the instantaneous frequency defined by:
1 db
=20 G (0
has a physical sense: it defines the frequency

modulation law of the signal.

5.1 WD of Monocomponent signals

We call monocomponent signal any signal for which the
instantaneous frequency law is invertable, so that the
Taw t:fi_l(f) is not multiform. This latter represents
then the group delay of the signal. In this case, the
WD makes the frequency modulation law of the signal
appear in the time-frequency domain, by visual
correlation of maximum amplitude curve and can be

estimated simply by peak detection.

5.2 WD of Multicomponent signals

Such a signal is characterized as the sum of several

monocomponent signals. The WD's behaviour depends on

whether the frequency modulation laws of each component

have same gradient or not.

<if these gradients are different(non-parallelism in the
(t,f) plane), WD analysis allows to separate the
characteristics of each component in the time-frequency
domain.

-If these gradients are equal(parallelism in the (t,f)
plane), WD analysis creates artefacts (a ghost law 3
appears equidistant between the two real laws 1 and 2).
However, this structure can be used for the inerpret-
ation of time-frequency analysis.
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[T

5.3 Noise Influence on the WVD

We have studied the behaviour of theWVD of a signal in
additive noise, with different ratios S/N. s(t) is a
signal with a linear frequency modulation law and n(t)

is a random guassian white noise is the same spectral
The study shows that the WVDhas a good
It shows the
importance of such an analysis, as classical methods

bandwidth.
behaviour in the presence of noise.

are unable to estimate frequency modulation laws in

such cases [9].

6. CONCLUSION

This paper shows that the WIGNER DISTRIBUTION is the

best tool for a time-frequency analysis:

- it allows a good visualisation of the signal time-
frequency Taw.

- it does not depend on any window-width defined a
priori.

- its execution is relatively easy.

- its computation is straightforward.

The property of reversibility between s(t) and its WD

allows filtering and pattern recognition in the time-

frequency domain [11].

This method has been recently applied by the author to

detect nitrogen bubbles moving in the blood(produced

in a hyperbaric environment) (11]. Previously, the

method has been developed by the author within ELF-

AQUITAINE Geophysical Research Centre, Pau, France and

has been applied to estimate the absorption and

dispersion effects of the earth from a Vertical Seismic

Profile [9]. This study has led up to perform an

automatic estimation of the absorption parameters and

has turned out to be very useful for the stratigraphic

interpretation. .
*The work published by P. FLANDRIN et al., in GRETSI,

SIGNAL PROCESSING and Comptes Rendus Acad.Sciences,
between 1979 and 1984 is mainly the rewriting of the
author's work(published in [6],[7],[9])after the
author left ICPI-LYON .
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APPENDIX: THE WVD OF A TEST SIGNAL

TEST NR C12 81344 RMT1563.344
GRAD T1 (V) 256 samples starting ot sample 1 Median depth = 0.0C0
At = 10wms.

Data: Higner-Ville spectrum: HWindow length = 64
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This figure shows the WVD of a test signal (Frequency modulated signal with a linear FM law), calculated by the
discrete-time analyser implemented by the author in 1978 for ELF-Aquitaine Geophysical Research Center, PAU,
FRANCE {References [6].[71.[97).



