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RESUME

L'identification d'un processus ARMA (auto-
regressive-moving average) consiste a déterminer ses
ordres et coefficients. Ce papier considére 1'ident-
ification ARMA utilsant seulement la séquence de
sortie, z,» Corrumpue par le bruit. Une difficu}té
fondamentale est l'estimation de la puissance (veri-
table) de sortie du processus, Ry, nécessaire pour
déterminer 1'ordre ainsi que pour estimer les param-—
métres, et qui ne peut pas étre considérée comme la
somme des carrés de z, a cause de la présence du bruit

Une solution est proposée dans laguelle on
calcule d'abord les coefficients ak de AR obtenne a
1'aide d'une Equation Yule-Walker d'Ordre Supérieur
(Cette éguation n'a pas besoin de R,) . Ensuite pour
une gamme de R, expérimentaux, on calcule\les groupe
correspondents des coefficients ap de AR a l'aide
d'une approximation AR a la methode AR d'estimation
ARMA. La Ry qui produit le groupe de dx les plus
proches de ak est choisie comme 1'estimée de la
puissance de sortie. Des qu'une estimée fiable de Ry
est disponible, l'identification peut suivre les
techniques standards. L'efficacité de cette méthode

est supportée par deux exemples de simulation.

SUMMARY

Identification of an ARMA process consists of
determining its orders and coefficients. This paper
considers ARMA identification using only the noise
corrupted output sequence z_. A fundamental diffi-
culty is in the estimation of the true process output
power R, needed both for order determination and
parameter estimation, and cannot be simply taken as
the sum of the squares of the z; because they contain
noise.

A solution is proposed which first computes
the AR coefficients §k from the High Ordexr Yule-Walker
Equation (This equation does not require Ry.). Then
for a range of test Ry, corresponding sets of AR
coefficients a3y are computed via an AR approximation
to ARMA estimation method. The R, that produces the
set of &) closest to the 4, is chosen as the estimate
of the output power. Once a reliable R, estimate is
available, the identification can follow standard
techniques. The effectiveness of the scheme is sup-
ported by two simulation examples.
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I. INTRODUCTION

System identification has many applications in
areas such as control, econometrics and spectral est-
imation. In the literature [11, identification is
usually taken to mean the determination of the orders
(i.e., the number of poles and zeros if the system is
linear) as well as the parameters (the poles and zeros)
of the unknown system. Occasionally, the term ident-
ification is incorrectly used to represent parameter
estimation of the system coefficients only, which nec-
essarily assumes that the system orders are known a
priori. In signal processing, there has been inter-
ests in the identification of an autoregressive-moving
average (BARMA) process [2-4], because of its relation
to speech modeling and spectral estimation.

Some of the early work on ARMA order determin-
ation were that of Chow {[5] and Akaike, who extended
in [6] his Akaike Information Criterion (AIC) for AR
processes to ARMA processes. Chow's method uses the
relationship between the linear dependency of the out-
put autocorrelation functions and the ARMA orders.
This was modified by Chan and Wood [4] who gave a
simpler implementation. Akaike's approach requires
the selection of many possible ARMA orders, estimation
of the corresponding ARMA coefficients, and finally
generation of the AIC's. Thus length computations
may be required.

When the ARMA output is corrupted by noise,
none of the methods above can be carried over for order
determination because they require good estimates of
the output power (denoted R,), which is not available
when noise is present. Chow [5] did allow additive
noise in the output but assumed known noise variance.
This paper considers the very general problem of ARMA
identification given only white noise corrupted out-
put. The AR order is first determined from the order
determination arxray (ODA) of [4], followed by an est-
imation of the AR coefficients. Let these be dp. BAs
will be seen, this portion of the identification can
be accomplished without the knowledge of R,. Next, the
AR and MA coefficients are obtained from the method of
Graupe, et al [7]. Here, R, is needed. Since its
direct estimate from the output sequence is not feas-
ible because of noise, a range of trial R, is taken to
compute several sets of AR and MA coefficients. Let
these be gk and Si respectively. A comparison is then
made between the ax and 3y . The Ry that produces the
gk closest to the ﬁk is chosen as the estimate of the
output power, Once this quantity is found, the MA
order and coefficient estimation follow known proced-
ures., Estimating the MA coefficients is a nonlinear
problem [10], However, by approximating an ARMA pro-
cess as an AR process [7], linear solution is possible.
There are three more sections to follow in this paper,
beginning with Section II which contains the develop-
ment of the identification scheme. The simulation
results are in Section III, followed by Section IV
which gives several variations of the scheme, together
with the conclusions.

II. ARMA IDENTIFICATION

Given a finite sequence {zn},’n=0,...,N—1 as
the sum of the output of an ARMA process plus noise,
that is,

where
q

P
X = z a X + .Z biwn—i , o
k=1 i=o
is the output of an ARMA process, and {Wn} and {£,}
are uncorrelated bandlimited white noise sequences [8],

the problem is to determine, from {zn} only, the order
(p,q) and coefficients ay,b; of the ARMA process.

We first briefly review the results in [4] and
[7] since they are central to the present approach.
Let

A

R (1) = B{x .o *n’ (3)
be the autocorrelation funckion of x, and consider

the ODA
Ryy (@) Ry (@=1) o.ov Ry {0) Ry (=1} Ryy (=2)...Ry, (-b)
Ryx(a+l) ..o...oio.en Rys (1) Ry (0) Ry (1) oooion..

. (4)

Rx§(2a+b).... ................................ RXX(—a)

which has the dimension (a+l+b) X' (a+l+b). The integers
a and b are chosen to be larger than the maximum expec-
ted MA and AR orders, respectively. It was shown in
[4] that if the procexs has orders (p,q), a check for
column linear dependency (£.d.) in the ODA (starting
from the left, the first column‘has index zero) will
reveal that the column of index p is linearly dependent
on the past p columns. Further, on continuing the £.4.
check, linear independence will be reintroduced at the
column of index m, where m=p-g+a. The above follows
from the simple gelationships

Rxx(z) = I ag Rxx(l—k) for 2 > g (5)
k=1
and
1%
RXX(Q) # kilak RXX(Q—k) for £ < g (6)

When the orders (p,q) are known, estimation of
the coefficients ax by follows the method of [7], which
approximates an ARMA process by a pure AR process. We
give an alternate development of the results in {7] that
includes the case of g>p, which was not considered in
{71.

The AR approximation of (2) is

Q
x, = %Z Cy g + Wy (7
or =1
Q
W, = %X - L C, x__ (8)
n n 9=1 2 “n-2

where Cp, %=1,..,Q are the coefficients of the AR pro-
cess and Q > p+g is chosen sufficiently large to ensure
an accurate representation of (2) by (7) but its exact
value is not critical. Thus if Q=20 is sufficient,

using Q=18 or 22 will not affect the results. The pro-
cess (2), however, must be stable and invertible [7].
These Cg coefficients are calculated from
c=r'ry (9)
where T
C = [C1C2 ... C]] (10)
Q
and - — .
RXX(O) RXX(—l)...RXX(l-—Q) RXX(l)
R (1) R._(0) weviunnnnn R__(2)
pod ped plols
R = . , R = . (11)
-1)..... e 0 R
R . (0-1) R (0 i XX(Q)
To relate the CK to ak,bi,\substitute (8) into (2) to
ive .
g P q Q
LN z a ¥ 0+ z bi[xn-i -~z CQ xn—i—RI (12)
k=1 i=0 2=1
Equating coefficients of x ,x ., t? xn—p results in
al] byl [1 0 ........0]fC1]
az;_ bs by 1 0O.......0 Cz2 1
I 0 P T T IO I 13
el e byo|lc
L°p] p| |Pp-17p-277 7t 2
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where, if p>q, we let bgy) = bgt2 = +... = bp = 0.
If p2q, continuing the process of equating coeffic—

ients of xn-p ~LreanrXpo g-0 gives

r C et c 1 [b

Cp+l Cp p-1 p-g+l !

............ C

Cor2 Cor1 p-qr2| | P2

. =-1 . - . (14)

C L ii it eereenn o) b

ptq p+g-1 P | q
Cc [ Cc
L Q | Q-1 0-q

and if g>p, (14) is replaced by
r r I
Cp+l.‘ Cp Cp_l.......,cl -1 0 .....0]|by
.......... - ...0
cp+2 cerl cP c, -1 0 by
= -1 . .| (15

C C C . iieiinnn. Veeenen c; ~1l{b

q a-1 g-2 v ! a|
C C o i iiiaeanaineaans C
LQ o1 0-1-q

It is noted that the matrices in (14) and (15) are
not square, and the pseudo-inverse [9] is emploved to
compute the b; from these equations.

When only z, = X, + €n 1s available, the
Ryy (*) required for identification is estimated from

~ 1 N-1 A
Rzzm) = N-L ER %n %neg é-Rxx(g) (16)
Now ~
e{r,, (W} = R (B for L # 0 (17)

However, if 2=0 in (16), then

2

g

where R, 8 Ry,(0) and ¢ 2 is the variance of the noise
sequence {En}. Thus when the output is noise corrup-
ted, (16) will still give unbiased estimate of Ryy (%)
for 2#0 but the estimate for R, is biased, and using
this estimate in (11) will give erroneous results.

E{R_ (0} = R +0 (18)
ZZ [e]

A new scheme is now presented for ARMA ident-
ification using only {z;}. First note from (4) that
if g®p, both linear dependency and then independance
again will have occurred in the ODA before the column
containing Ryx(0), the a®™P column, is reached. add-
itionally, if p2g, linear dependency will occur before
the ath column but linear independence will not occur
before the at! column. Hence, without the ath ana
the following (a+1)th,. .., (a+b)th columns which all
contain R,, we can still deduce from (4) the follow-
ing:

(1) the order p, and

(ii) the oxder g if pzg, or

(1ii) the information that g>p.

With p estimated, the a; coefficients can be
obtained, without the need of Rys by the High Order
Yule-Walker Equation (HOYWE) ([9]

a = T 'g (19)

\T [N N
where a = [a; a:....aC] and the estimate of a,_ are

k

| %xx(p) R (p-1)e..o.R_ (D) (R (prD)
Rxx(p+l)R [6=2 I A - 4

R L g=l - (20)
. . R
] R, (2p-1) ...l R . (P) [Rxx(Zp) —

The next step is the estimation of R,. It in-
volves the introduction of a range of trial R,, start-
ing from the maximum of the R, (%), %#0, denoted Ry to
R, (0) obtained from (16) with £=0. The bounds for
this range come from the inequalities Ry 2 Ry, a prop-
erty of the autocorrelation function, and Ryz{(0) 2Ry
as seen from (18). The actual number of R, in the
range depends on the resolution required. In the sim-~
ulation, R, is computed by

J(R__(0) - ﬁM)
~ A
=Ry K (21

with 3=0,1,...,K and K=20. For each R.)’, a set of
Cy is obtained from (9), by replacing the Ry, (¢) in (11)
by their respective estimates from (16) and Rxx(O) by

(j). Then a set of bi is computed from either (14)
or (15), depending on whether p2g (g is not known but
set equal to p in (14)) or g>p (then both p and g would
have already been determined from (4)). Finally, a set
of ay is obtained from (13). Denote these as &y. These
3y are compared against the a4, obtained earlier from
(19) by the cost function

>

P
I = I (3 - 31 (22)

k=1
The ﬁéj) that produces the smallest J is taken as the
best estimate ﬁo*. If g>p, the identification is com-
plete at this point with (p,q) determined, &) computed
from (19) and the b; chosen from the set corresponding
to RO* If p2q, Ry* is put into the ODA in (4) from
which q is determined. Then the b; are calculated
from (14).

To summarize, given only {zn}, the identific-
ation is as follows:

(i) Form the ODA in (4) with the correlation estim-
ates (16) in place of the true Rxx(').

(ii) Do a %.d. check on the ODA columns by the Gram-
Schmidt Orthonormalization (GSO) procedure (4]
to get the order p,

(iii) Continue the GSO procedure for linear independ-
ency check and if g>p, g is also determined be-
fore the column containing ﬁXX(O) is reached.
Then go to (iv). Otherwise p2g and g cannot be
determined at present. Go to (v).

(iv) Here (p,q) is determined. Compute &) from (19).
For each RO(J) in (21), obtain estimates &, and
b through (9), (15) and (13) and J from (22).
The RO(J that gives the smallest J is the best
estimate of Ry, (0) and the bl corresponding to
that R0 (3) are the b; estimates.

(v) Here it is known that pzg and p is determined.
Compute 8 from (19). For each RoJ in (21),
obtain estimates ay and b through (9), (15)
and (14). Since g is set to p in (14), the
matrix there may not have full rank. This will
not pose any problem, however, as the pseudo-
inverse solution [9] will prqvide the best fit.
Compute J and choose the R (3) that gives the
smallest J. Put this Ro (37in (4) to determine
q. Then recompute the b; from (14) with the

proper q.
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IITI. SIMULATION RESULTS

Two ARMA processes, one has g”p and the other
p>q, were selected to evaluate the identification

scheme. In both examples, the order Q=20 was used in
(7). The first example is ARMA (1,2) given by
= 0. +W_-0. +0.
x, = 0.75 %, +W -0.682 W , +0.578 W
z, = X + En (23)

The sequences {W,} and {€,} are outputs of independ-
ent gaussian random number generators with variances
adjusted to give a desired signal to noise ratio,
defined in db as

SNR =

where N is the number of data points. The results of
order determination from {zn} are in Table 1. For
such a lower order system, 1000 points are sufficient
to achieve reasonable success in order determination.
Indeed, although not shown in the table, correct ord-
ers were found in all cases for SNR 3.7 db when 5000
points were used.

The other example is ARMA (3,2) given by

x, = 0.1x . +#0.45x 0.3 x ,+W +0.15W

-0.3 wn_2

2y T *n * g’n (24)
Because of the higher order in this example, more
data points are needed to attain the same degree of
accuracy in order determination as in the first
example. Table 2 lists the results where it is seen
that for low SNR, obtaining the proper orders is still
very difficult even with 10,000 points.
A plot of the function J of (22) against R 3
for these two processes, in Fig. 1l(a) and (b), reveal
a surprising property of this function. For ARMA
(1,2), J keeps on decreasing until R,, the true Ry (0,
is reached. After that, J remains relatively constant.
In contrast, for the ARMA (3,2) process, J increases
again after Rg. Further investigations with other
processes confirm the following behavior of J. For
gZp processes, the general shape of J is as shown in
Fig. 1l(a) while for p>q processes, J attains a minimum
at R,- This particular property of J, as seen in

Fig. 1(a), suggests that if g>p, using any wrong Ro( )
.aslongas it is greater than Re » will give good estimates
of the &, remembering that J measures the similari-
ties between ak and d;. This observation can be
explained by an examination of the method of [7]. Let
Ryx (0)>>Ryy (1), £#0, in (9) and (11). Then R in (11)
is approximately a diagonal matrix with identical
diagonal elements Ry« (0) and the C; from (9) will be
approximately egual to Ryyx{i)/Ryy(0) << 1. Putting
these C; in (14) and (15) and cancelling out Ry, (0),
it is seen that these equations are the same as the
HOYWE of (19), except with a difference in sign, i.e.
by ¥~ aj.  Further, since |cj|<<|b;|, from (13),

dy #- by ~a;, resulting in a J function that does not
increase after Ro. In contrast, for p>q, the coeffic-

ients bq+l""'b are set to zero in (13). Thus
aq+1,aq+2,...,ap will not equal aq+1,...,a and J will
increase again after R,, as shown in Fig. g(b) As

mentioned, these conjectures were substantiated by’
simulation investigations with other processes.

The parameter estimation results are summar-
ized in Tables 3 and 4. In each example, several in-

dependent computer runs were conducted and for 25 of
those that gave the correct order determination, the
coefficient estimates were recorded. Their means and
one standard deviations are the entries in the tables.

IV. CONCLUSIONS AND MODIFICATIONS

This paper has presented a scheme for ARMA
system identification given only noise corrupted
measurements {zn}. Because of noise, summing squared
samples z, results in a biased estimate of R,. By
comparing the ay coefficients obtained from two diff-
erent methods, one requiring Ry and the other does not,
a range of R0 (3) was checked to arrive at the proper
estimates. Once the major difficulty of obtaining R,
is removed, the ARMA identification problem is solved
via the methods of [4] and [7]. sSimulation results
have verified the procedures in Section IT and con-

y of the main idea.

9]
fu
o
o
i
o

Several variations of this scheme are possible.
If p>q, an alternate cstimate for R, is available from
the equation

~ -1 PN
Rxx(p) = Z ay R X(p—k) + ap RXX(O) (25)
k=1

We can also estimate R by comparlng the CoefflCantS
b, instead of ay in 5.0 For each Ro (3}, a set of b is
computed from (14) or (15) as descrlbed prev1ously. A
different set, b can also be computed from (13) u31ng

the & from (19). ©Now for J Y{bl ~b )?, the Ro

that minimizes J is the best estimate for Ry- Finally
from (2), define the residual sequence as
P q
r =X - na X =5 W, (26)
n n k=1 k "n-k 1=0 1 n-i
and approximate it by the AR process
Q
r = LC,«r + W (27)
2 -2 n
n 0=1 n
so that (26) becomes
q Q
r = I bi[rn_l - Z Cy rn—i—ﬁ] (28)
o i=0 2=1

Given ak, and a range of estimate of O 2, R (J),
together with Ryx(*), the autocorrelatfon functions of
Tnr Ryer(*), can be calculated from (26). Following
the procedure in Section, II, starting from (9), a set
of Ek is found for each Rg'J Comparing tgem against
gk will similarly provide an estimate of C and thus
Ry- All these variations have been verified by simul-
ation. Their performance is comparable tg that of the
original scheme although the estimate of RXX(O) from
(25) is consistently less reliable. This is probably
caused by the division operation (by a_) needed to
obtain Ryy(0). Errors in ép affect diYectly Ry, (0).
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SNR in db No. of Correct Determination
no noise 14
22.79 14
8.81 11
3.7 8
TABLE 1, ARMA (1,2) Order Determination,
1000 points, 25 runs

X No. of Correct Determination
SNR in db T *
5000 Points 10,000 Points

no noise 11 23
22.79 12 23

8.81 7 20

3.7 7 3

TABLE 2, ARMA (3,2) Order Determination, 25 runs each
J J 4
X
~ (3) N
R, R, Ro
(a) qzp (b) p>g
N GD)

PIGURE 1. Plot of J vs R,

2 (3)
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No. of SNR EN El by Parameter
Points 0.75 -0.682 0.578 True Value
: o _.7584 | _ _ -.7042 | 6594 _
ne noise 0486 L0613 1201
.7557 ~.6941 6241
() — e e e e e s e b s m— e e - e —— o — - — — — —— —
22.7¢ 0493 .0480 L0819
1,000
o o1 7603 o -.e935 | .eses _ __
- 0545 0635 1108
R o __ 7780 _ _ @ _ _ -.6527 _{ ___.°871 _ _ _ _|_MEAN _ _ _ _ __
-7 0632 1185 1 11563 Std. Dev.
: o _.7481 -.6957 _ _p _ _.6387 _ _ _ _
ne noise L0234 L0272 To713
.7463 -~ .6916 6171
22.719 - 0237 L0262 L0615
5,000
PV S 71/ S N ~.6764 | .seas
-8 0250 70299 70394
3.7 7812 F -.6636 | . 5614
. 0276 0647 0909

TABLE 3. Parameter Estimation ARMA (1,2), 25 runs

No. of SNR A, A, E i by by Parametey
Points 0.1 0.45 -0.3 0.15 -0.3 True Value
no noi _ _-1027 | .4456 _1-.3235 |y .2073 }-.2305__ _ _ _

orse 0870 L0736 0619 -1098 .1086
22,75 _ _-1031 | .4466 | -.3236_| .2035 | -.2337 _ _ _ _
: 0868 L0734 L0622 | 11157 1126
5,000
o o1 __.094_| .a441 |-.3392 | .1763 | -=.2495 _ _ _ _
: 0944 ~0794 .0783 1333 .1348
3.9 _ _-0693 | .42i8 (-.4011 { .1593 | -.2394 ;] MEAN _ |
: 1216 1055 1374 1247 1564 Std. Dev.
: _ _»0950 | .4481 [-.3100_ | .2049 -.2464 _ _ _ |
po noise L0572 0550 .0281 1007 .0963
. . -. .2018 | -.2498
29 7 _ _.0936_ | .4867 [-.3113_ | .2008 |-.2498 _ _ _
0583 0549 .0283 1008 0959
10,000 J
a.81 _ _.0854 | .4384 |-.3242 1 .1755 | -.2684 _ |
. .0716 L0640 .0393 L1117 1117
3.7 _ _.0685_ | .4207 |-.3584 | .1997 | -.2268_ _ _ _ |
: .1037 0932 .0754 11647 .1720
hd |

TABLE 4., Parameter Estimation ARMA (3,2), 25 runs




