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RESUME

On montre 1’analogie entre l'emission d’image du
radar doppler avec retard de temps et la tomographie
utilisant 1l'emission du positon, Ceci suggere de
nouveaux logarithmes de traitement d’informatioms pour
le probleme d’'emission d'image par radar, ce qui peut
permettre une meilleure visualisation des objectifs.,
On considere que la structure do recepteur costituee
d'un filtre adapte a bande passante d'un detecteur
d'enveloppe quadratique et d'un traitement d'informa-
tions specialise peut produire des images. On peut
utiliser des signaux de radar ayant des structures
classiques de lobe lateral ainsique autres caracteris—
tiques, Le traitement specialise mecessaire est
couteux mais 1'architecture du logarithme peut permet-
tre des implementations en temps reel,

SUMMARY

An analogy is identified between imaging in delay—
doppler radar and positron-emission tomography. This
suggests new processing algorithms for the radar—
imaging problem that may permit improved visuwalization
of targets, A receiver structure consisting of a
bandpass matched-filter, square—law envelope—detector,
and specialized processing is propesed to prodoce
images. Radar signals having practical sidelobe struc—
tures and other features can be accommodated., The
specialized processing required is demanding, but the
architecture of the algorithm may permit real—time
implementations.
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I. Introduction

An snslogy has recently become recognized between
delay-doppler imaging- radar systems and tomographic
systems used in clinical radiology. It is an analogy
holding the possibility of improving rader imaging
because the use of matched filtering for noise sup-
pression is suggested even by initial comparisons,
and, mure importantly, because it suggests a line of
thinking by which new mathematical models for the
radar-imaging problem might be formulated and solved
for improved processing that accounts for dominant
effects including noise. This observation was made by
M. Bernfeld {1], and it also appears in & different
form in the work of D. Mensa, S. Halevy, and G. Wade
[2}. These studies all draw the analogy to a tomo—
graphy system wherein the data available for proces—
sing are in the form of idealized, noise—free line-
integrals through the object being imaged, a situation
that is well approximated with x~ray tomography sys—
tems because x~ray sources can be highly collimated so
as to form narrow x-ray beams of high intemsity that
are passed through the object being imaged. The ana-
logy that has beem articulated in [1] and [2] is not a
particularly good one because the ambiguity functionms
of radar signals of interest (for example, the fre—
quency-stepped chirp—signals of M, Prickett, D.
VWehner, and C. Chen [3] and D. Wehner [4]) have side-
lobe structures and other features that cause a depar—
ture from idealized line—integrals and also because
noise can be nonnegligible in some radar—imaging
situations. The purpose of tbis paper is to suggest
an approach which may permit the removal of the re-
striction of noise—free line—integrals so that general
ambiguity—-functions can be accommodated and to suggest
the development of mathematical models so that the
effects of noise can be recognized in the processing
of radar returns, This will be accomplished by making
an analogy to newer tomography systems that employ
positron—emitting radionuclides rather than x-ray
sources.

II. Background and Concept Outline

radar imaging. Suppose that o(t,f) is the
target scattering-function [5, p. 4481, which is the
average reflectivity as a function of delay <t and
doppler f. Also, let a(t,f) denote the ambiguity
function of the transmitted radar—-signal [5, p. 279].
Then, in the absence of noise, the output p(t,f) of
a radar receiver consisting of a bandpass matched-
filter (BPMF, matched to the transmitted radar signal)
followed by a square—law envelope—detector (SLED) is
the convolution of the target scattering—function and
the ambiguity function of the transmitted signal [5,
pp. 462-4631,

pe.) = [ oter eater et aurate.
(1)

For the delay-doppler radar-imaging problem without
noise, we consider a sequence of target illuminations
by chirp—~FM signals, with each signal having a dif-
ferent chirp rate, The effect of changing the chirp
rate of a signal on its ambiguity function is to
rotate the ambiguity function to an angle, say €, in

* o(x,f), ae(t,f), and pe(t,f) correspond to A(x),
pe(xle), and u(u,0), respectively in [6], where x and

u are two-dimensional vectors,

the delay—doppler plame [5, p. 291]. To indicate this
dependency, we change the notatiom in (1) to

2ot ®) = [[ olzritag (vt it avrar,
[:]

(2)

where © is determined by the chirp rate relative to

the radar pulse without chirp—~FM. The mnoise—free

radar—imaging problem is to observe the output of the
BPMF-SLED receiver pe(t.f) for a sequence of target

illuminations having different chirp—FM rates 6 = 6
91. oo s ON
o(z,f).

0’
and to determine the scattering function

tomographic imaging. We now turn to recent
developments in positron—emission tomographic--imaging
systems where a relation analogous to (2) occurs. In
these systems, a positron-emitting radionuclide is
introduced inside & patient, and the resulting ac—
tivity is observed externally with an array of scin-
tillation—detectors that surround the patieat in a
planar, ring geometry. When a positron is produced in
a radiocactive decay, it annihilates with an electron
producing two high energy (512 kev) photons that pro-
pagate in opposite directions along a line. Imn the
first systems employing positron emission, the line—
of—-flight of the two oppositely propagating photons is
sensed for each detected event; these data are then
organized according to their propagation angle and
processed with the same algorithms used in x-ray tomo—
graphy. The result is an estimate of the two—
dimensional spatial distribution of the radionuclide
within the patient in the plane of the detector ring,
Recent developments relevant to this paper have re—
sulted from improvements in high speed electronics and
detector technology, which make it feasible to measure
with useful accuracy not only the line—of—-flight of
annihilation photons but also their differential time—
of-flight. The result is that, in the absence of
noise, the measurements are in the form of (2) with
o(t,f) being a two—dimensional activity distribution
to be imaged, and with ae(t,f) being the error

density associated with measuring the location of an
annihilation event [6].* The noise-free imaging pro-
blem of emission tomography is to observe the line—of-—
flight and the time—of—-flight of the sequence of de—
tected annihilation photons, modeled on the average by
pe(r,f) in (2), and to determine the two—dimensional

activity distribution o(v,f). Here, ae(r,f) is a

known function determined by instrumentation errors,
and pe(t,f) is the number of detected events having

a line-of-flight with angle © and differential time-
of-flight corresponding to position (t,f) along the
line—of-flight. Data quantized to ninty-six angles
(6i = 180i/96, i = 0, 1, ..., 95) and to 128-by-128

positions are collected in the instrument being de-
veloped at Washington University [7]. The error den—
sity ae(t.f) is determined by both the physical size

of the c¢rystals unsed in the scintillation detectors
(resulting in about a 1 cm uncertainty transverse to
the line—of—-flight) and the timing resolution of the
electronic circuitry used to measure the differential
propagation—time (resulting in about a 7 cm spatial
uncextainty along the line—of-flight). For present
systems, this density is reasonably modeled by a two—
dimensional, elliptically asymmetric Gaussian—function
having its major axis oriented with the line-of-flight
and its minor axis oriented transversally to this.

For the radar—imaging problem, this density cor-
responds to the ambiguity function of a radar pulse
having an envelope that is & Gaussian function and a
phase that is a linear-FM chirp.
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In summary:

a. For delay-doppler radar—imaging, we sup-—
pose that the target is illuminated by a
sequence of radar pulses each having a dis-
tinct FM—chirp rate corresponding to angles

e = 90. 91, ces s ON spanning the range from

0 to 180°, A BPMF-SLED receiver produces
data pe(t,f) for 90, 01. see s GN and

quantized values of (t,f). The ambiguity
function ae(t,f) is known. The problem is

to estimate the target scattering function

o(t,f) wusing the relatiomship in (2).

b. For emission—tomography imaging when both
time—of-flight and line~of-flight information
is available, we have event data p,{(t,f) at
angles € = 60. 61, ces GN spanning 0 to

180 and quantized values of (<z,f). The
measurement—error density ae(t,f) is known.

The problem is to estimate the activity dis-—
tribution o(t,f) using the relationship in

(2).

Substantial progress has recently been made toward
solving the tomography-imaging problem, We next ex~
plore the implications of this for radar imaging,

JIX. Preliminary Considerations

In this section, we briefly outline what the re-
sults in [6], [8], and [9] suggest for the radar-
imaging problem. The algorithm for solving (2) that
is proposed in [6] and evaluated in [8] and [9] is
derived by applying statistical-estimation theory to a
mathematical model that accounts for the noise and
other effects seen in an emission-tomography system
having time—~of-flight measurements, This noise is
Poisson distributed, as might be expected because of
the quantum nature of radioactive decay, an effect
well modeled by a Poisson process with intensity
o(t,f) proportional to the concentration of the
radioactive source. It is argued in [6] that the
measured data (i.e., line~ and time—of-flight of anni-
hilation photons) are also Poisson distributed, with
the intensity being pe(r.f) in (2). Maximum—~likeli-

hood estimation is then used to estimate o(<,f).
This approach to algorithm development has been ex—
tended in [10] for more accurate reconstructions at
the expense of greatly increased computation.

For the purpose of this discussion, we now neglect
the effects of noise and statistical fluctuations in
the measured data and take pe(t,f) as the measure—

ment, as we have described in Sec, 2. The algorithm
developed in [6] then suggests the following for the
radar-imaging problem.

The output pe(t,f) of the BPMF-SLED receiver is

three dimensional because it is a functiom of the
three independent variables €, t, and f, The target
image sought o{t,f) is two dimensional. Thus, a
three—dimensional to two—dimensional transformation of

Pg(t,f) is required as part of the processing, This

is accomplished in two steps in [6], but the algorithm
can be partitioned in other ways too because it is
linear. The first step is to form a two—dimensional
*'preimage array.’'’ This is accomplished by con-

volving the data pe(r.f) obtained at each FM-chirp
rate O with a weighting function we(t,f) and then

summing the results over €; that is, we form the
functions

= ' ' I3 _ £ ’ ’
£4(%.0) ” RCIR O PN TR ST BPLT I
(3)
and then we obtain the two—dimensional preimage
f(v,f) according to

n

f(x,f) = J fe(t,f)de.

0 (4)
The formation of this preimage corresponds to some
extent with back-projection step of the ‘unfiltered
back-projection, post two—dimensional filtering’ ap-—
proach to idealized line—integral tomography. Ex-

amples of weighting functions that might be adopted
are indicated as follows.

example 1:
_ -1
we(t,f) = (bt of) Isr(t)laf(f).
where

1, Izl ¢ 8v/2, l£l < 8£/2

I

ISr(t)Isf(f)

[

0, otherwise.

Here, we(t,f) is unity for delays and dop-

plers in a small bin located at t and f
in the delay-doppler plane and is zero
otherwise, independently of the sweep rate
9, In this case, fe(t,f) equals pe(t.f).

and the preimage is
7
f(z,f) = J p.lt,f)de.
0 [+

This choice of we(r,f) might be reasonable
if the ambiguity function ae(t,f) is con—~

centrated about the origin (t,f) = (0,0),
which requires a very wideband radar signal.
Then, pe(t.f) equals o(x,f), and the

preimage is obtained simply by post detec—
tion integration in each delay—doppler bin
without further processing,

example 2: Suppose that we(t,f) is

upity for values of delay and doppler within
a narrow strip of width & passing through
the origin of the delay-doppler plane at
angle € and that we(t.f) is zero other-

wise {(see Fig. 6 in [6]). Then fe(t,f) is

a strip integral, or line integral for &
small, through the data Pe(t.f), which

corresponds to unfiltered back-projection in
tomography. This is similar to the situa—
tion considered by M., Bernfeld [1].

OQur experience in positron—emission tomography sug-
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gests using we(r.f)

This corresponds to taking the value of the BPMF-SLED
signal p,(t,f) observed at each value of delay and
doppler (t,f} and distributing it over the delay—
doppler plane according to the ambiguity function
ae(t,f). This approach is the one now used routinely

= ae(t.f) to form the preimage.

in emission—tomography systems having time—of—flight
data; its performance for emission tomography is dis-—
cussed in [9]. If the mathematical development in [6]
carries over to the radar—imaging problem, this choice
of weighting function would be motivated by noting
that the resulting fe(t,f) is the maximum—likelihood

estimate of the delay—doppler reflectance in the tar-
get that led to the measurement pe(t,f) assuming a

priori that o(z,f) is uniform,

The second processing step is to obtain the target
image from the preimage. This is done to within a
resolution function h(r,f), which defines a ’'‘desired
image’' according to

d(z,f) = J h(t—r',f-f')o(c’',£')dvdf.

We have found that including such a resolution
function is important in processing emission-tomo-
graphy data as a way to trade off resolution and
smoothing for noise suppression. In [6], a narrow,
two-dimensional, circularly symmetric Gaussian resolu-
tion-filter is used. Let d(t,f) denote the estimate
of d(t,f) obtained by processing the preimage
f(r,f). Also, let D(mn,v) and F(u,v) denote the
two—-dimensional Fourier transforms of d(<t,f) and
f(t,f), respectively. The from [6, eq’'n. 171,

D(u,v) = H{(uw,v)F(u,v)/G(u,v),
(5)

and
g(t,f)

where H(u,v) is the transform of h(«,f)
G(u,v) is the transform of the function
fined according to

de—

T
g(t,£) = (1/n)f 8y (%, 1w (. £)d0.
0 (6)

The image d(t,f) is obtained from D(u,v) by a two-
dimensional, inverse Fourier transformation. The
functions g(t,f) and G(u,v) are precomputable
since they depend only on the ambiguity function and
the weighting function used to form the preimage and
not on the measured data. For the choice

we(t,f) = ae(r.f).

the function g(t,f) is the average over © of the
square of the ambiguity faunction., In [6], ae(t.f) is

& two-dimensional, asymmetric Gaussian function, and
g{t,f) is a Bessel function. The derivation in [6]
does not require that ae(t,f) be Gaussian, but

g{t,f) will usually need to be evaluated numerically
for practical ambiguity functions,

The processing we have described for the radar-—
imaging problem is motivated by the processing derived
from a mathematical model for the emission—tomography
imaging problem. We are optimistic that improved
radar images will result from its use, but further
research is needed to explore this,

IV. Algorithm Architecture

The architecture of the algorithm defined by (3)-
(6) is similar to that discussed in [11] for tomo-
graphic imaging. Data acquired for each doppler rate
can be processed in parallel and then combined to form
f(z,f) according to (4), and the processing in (3)
required for each doppler rate can be pipelined. The
processing implemented in current emission-tomographs
is performed in the spatial rather than Fourier do-
main.,
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