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RESUME

Des processus aleatoires non stationnaires,
dont la configuration est modulee en frequence, se
pregentent dans la pratique: ‘on peut citer
l'exemple de la perception, par un observateur, de
son emis par une source en mouvement produisant un
signal aleatoire. Ie signal congidere dang le
repere de reference de la source peut paraitre
stationnaire, alors que, considere dans un repere
lie a 1'observateur (en mouvement relatif par
rapport a la source) il n'apparait plus
stationnaire du fait de la 'dilatation' de la
variable independante.

cet article decrit la caracterisation en
temps-freqpénce de tels processus en termes de
spectre de Wigner-ville et de spectre
evolutionnaire de Priestley.

Pour calculer les densites spectrales
evolutionnaires des processus modules en
frequence, le concept de ‘equivalence de
covariance' est necessaire.

On montre que les deux caracteristiques
‘spectrales sont liees et on utilise, pour
demonstrer la relation entre ces dernieres
quantites, 1l'exemple d’'une source monopolaire se
deplacant a vitesse constante.

SUMMARY

Nonstationary random processes having a
frequency modulated form arise in practice, for
example, the sound perceived by an obsexrver due to
a source that is moving and emitting a random
signal. The signal, when viewed from the frame
of reference of the source may be stationary but
when viewed by the observer in motion relative to
the gource it appears nonstationary due to the
'dilation' of the independent variable. This
paper describes the time-frequency character-
isation of such processes in terms of the
wigner—ville and Priestley's evolutionary
spectra. In order to calculate evolutionary
spectral densities for frequency modulated
processes the concept of 'covariance equivalence
is necessary.

The two spectral characterisations are shown
to be related and an’ example of a simple monopole
source travelling at constant speed is used to
demonstrate the relationship.
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INTRODUCTION

Some physical nonstationary random processes
exhibit a 'frequency modulated' structure. An
example of such a process is the sound perceived
by an observer due to a moving sound source
emitting a random signal. If such random
processes are viewed in the ’'frame of reference’
of the source they may be stationary and the
acoustic signal emitted by the moving source

" is stationary to an observer moving with the
source. However, when such processes are viewed
by an observer in motion relative to the source,
then a dilation of the independent variable
characterising the process occurs and the process
is nonstationary in the frame of reference of the
observer and is frequency modulated in form.

The description of spectra for such processes
is of interest and two important candidates for
'time—frequency’ spectral characterisation of
nonstationary processes are the Wigner-Ville
spectrum [1,2] and Priestley’'s evolutionary
gpectral density [3].

A technique called the 'covariance equivalent’
method has been put forward [4,5,6] to describe
such processes. In-[7] the authors have shown how
evolutionary spectra and Wigner—-Ville spectra may
be related for covariance equivalent processes.

In this paper the work reported in [7] is
summarised and the linking of the two forms of
time-frequency spectra made more explicit. These
results provide a basis for the interpretation of
the results of an example, namely the description
of the sound perceived by an observer due to a
moving monopole source which emits a random signal.

WIGNER-VILLE SPECTRA AND EVOLUTIONARY SPECTRA
Definitions

The definitiong that are used in this paper
are now given for both Wigner-ville and
evolutionary spectra for a nonstationary process
x(t), It is assumed wherever appropriate that

®(t) admits the required representation.

Evolutionary spectra [31

A nonstationary procesg xX(t) is termed
oscillatory if it admits the representation

)
x(t) = | A(t, w)eivtax(w) (1)

4

where X(w) has orthogonal increments (i.e.,
E[aX*(w, )dX(w,)] =0 for w, # w,) so that

Ryx(ty, t2) = E[x(t;)x(t,)]

J(t—ty

00
=_i Ax(t,, w)A(t,,0)e Syx(w)dw (2)

It is assumed that E[/@X(w)!?] = Syx(w)dw.

The evolutionary (power) spectral density for
x(t) is

Sux(t, ) = IA(t, ©)1%8xx(w) (3)

wignexr—Ville Spectra [1,2,3]
The Wigner-vVille spectrum for X(t) is written
1 T T\ 5
- - Tye—ivT,
Wx(t,v) = 52 I Rgx(t - 5, t + 3)e dar  (4)

-0

Relationship between the Wigner-Ville and
Evolutionary Spectral Densities

From (2) and (4) it follows that

1 00

e £,v) = 5= _[ V(£,v,0)Sxx(t,0)80  (5)
w0

where

v(t, v, w) =

T T
o  Ax(t - E,m)A(t + E,w)

J IA(t, w)i®
~0

eIV ey (6)

Equation (6) links the two *time—frequency’
spectra and shows that the Wigner-ville spectrum
at time t and 'frequency' v involves the
evolutionary spectral density at time ¢t and a
(weighted) integral over the ' frequencies’ w,
involving the function written as vit,v,n).

For the case of uniformly modulated processes,
namely when A(t, w) = A(t), then V(t, v, w) may
be written V(t, v — w) and now V is
essentially the ambiguity function [8] of the
modulation A(t), i.e.,

T T
A(t - E)A(t + E)

HETTE e~ITlv=w) gr (7)

V{t,v-w) = |

-0

Under such circumstances

1 o
ox(t,v) = 52 I-V(t, Vv - 0)Sge(t, w)Aw (8)

-

and Wyx(t, v) is seen to be a convolution (for a
fixed t) of V(t, w) with Sxx(t, w).

In order to develop the link between the two
spectra more clearly a particular form of modulat-
ing function A(t, w) will be gelected, namely

(t - T(w))?

A(t, ©) = Aglwle (9)

Ay(w) is a time independent term and T(w)
is a 'delay’ that is assumed to be frequency
dependent. This choice of A(t, w) allows the
synthesis of a nonuniform modulation that
regsembles (in part at least) some characteristics
of the Doppler shifted signals considered in the
example later. This is achieved by suitable
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selection of the function T(w) for each w. The
peak value of A(t, w) occurs at t = T(w) when
AL, w) = Aglw).

Under these circumstances

V(t, v, w) = . -
(P agluy i 2e Xt 5 T2 ~a(t+ 3 ’T(”.))fjﬂu-u)
i , S Za(E = T(w))E © ar
~ iAg(w)iZe

Simplifying the integrand yields (10)

2.
o _ ot
Vit vew)y = f o E e"IT(v-0} gr  (11)
-0

which is, conveniently, independent of BAy(w)
and T(w). Now using the result

®
f -at? _; T ~0%/4a
je ejm‘dt:t’;e (1z)
-
it follows that
- (uv)?
2 20
V(t, v-w) = ¢ ~; e (13)

—

20 that the Wigner—-ville spectrum is now
T2y
Wa(t, v) = -2 T Suxl(t, w)e ™ (14)
va2ra -

It is seen that a convolution relationship
1inks Syu(t, w) to Wyx(t, v). In oxdex to
obtain a more explicit link it is now necessary

'

2«
treat e as 'narrow' near w = v as com~

pared with H}‘gvx%riation of (with w) Syx(t, w),
ie., e 2 is assumed to be a 'pseudo
delta function’ with respect to Syx(t, w).

If Sgx(t, w) is expressed as a Taylor expansion
in the vicinity of ® = v, then we can write

Sie(t, ©) = Se(€, v) ¥ (@ ~ V)Sx(t, V)

- 2 "
P € it D)

71 Syx(t: V) + ... (15)
' 9S t, w) |
where Syx(t, v) denotes "ng;"""‘)‘ ! , etc.
W=y
R Ca
Since 1/v2max T e 2a dw = 1, Wglt, v) in

-0
(14) may be written

Wiodlt, ¥) = Sux(ts v) + Se(t, v) —-

¥Y2ra
- - Lwmv)?
H 2a
x i(w - v)e dw
& ¥
sl © (w-v)2
1 { - TEET
+ _2‘%1'.4.2.& Tira _Lm (0 - v)le aw +

(16)

Neglecting terms of third and higher order we see
that

w;*“(tv v) - s‘%‘ﬁ’(tl v) =

Sxp(tv) 1 P - vy
2 t Ve iy
_ (wov)?
2a
x @ dw (17)

from which it is clear that the sign of Syy(t,
v) dJdecides whether the evolutionary spectral
density is greater than the Wigner-~ville spectral
density, i.e., )

if S"xy(t, v) is positive Sxx(t,v) ¢ Wax(t, v)
and
if S"&(t, v) is negative Spge(t,v) > Wal(t, v).

It must be emphasised that these are not
general results but have been derived usinhg a
particular form of modulating function A(t, w).
However, the implications of these results provide
the background for the interpretation of the
example given later.

COVARIANCE EQUIVALENT RANDOM PROCESSES AND THEIR
SPECTRA

The principle of 'covariance equivalence' has
been described and used elsevwhere [4,5,6].

Consider a function y which is a function of
some variable u, i.e., y(u). Assume that y(u)
is a (zexo mean) stationary (with respect to u)
gtochastic process with autocovariance function
(ACVF) E[y(updy(us)] = R (i1uy = u,i). To create
a frequency modulated pro(?(e’ss let us regard u as
a function of another variable t (time). Now
let us descride y regarded as a function of
time, i.e., Wt) = ylu(t)l.

Now y(u) is assumed to have a shaping filter
representation, i.e.,

y(uy = £"x(u) (18)

with ax/du = ax(u) + bw(u) (1)

A is an (n x n) congtant matrix and b, ¢ are
nx 1lvectors; X is ann x 1 state vector and
w is a white process with E[w(u,)w{u;)] =
B(uy ~ uy).

Our objective is to obtain a model for ;(t)
and it may be shown that a process ¥,(t) may be
generated which is 'covariance equivalent' to
y{t), i.e.,

RY.LY;.(ti’ tz) = RGE,, t,) (20)
The process y,(t) satisfies
¥i(t) = T, (t) (21)
with dx,/at = dax,(t) + voow, (1) (22)
with E[wy(ty Wa(t2)] = 8(t, ~ t,).

The above may be generalised to include
uniform modulation in addition to the frequency
modulation by allowing the vector ¢ to be u
dependent, in which case y(u) is no longer
stationary with respect to u. We shall use this
more general form later.
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Wigner-ville Spectra

The Wigner—Ville gpectrum is easy to write
down in integral form. We require
R§§!;—T/2, t+7/2), and this follows directly from
(18) and (19), by the usual solution of a state
described system (see [7]).

Evolutionary Spectra

Evolutionary spectra cannot be obtained for
y(t) but can be for y,(t). If w,(t) in (22) is
{formally) expressed as

o0

Id -
wi(t) = | eIotaw(w) (23)
~0
with power spectral density for w,(t),
S (w) = 1/2m, then, using (23) in (21},
WiWy
(22) we get
m -
yylt) = _( A(t, w)elwtaw(w) (24)
-0
where

00
alt,w) = QT(u(t))j¢ﬁa(t,t—T)Vﬁ(t~T)e—]wTdTQ
* (25)
The evolutionary spectral density for y{t) and
hence by covariance equivalence ¥ is
IAr(w)i2

S t,0) = — (26

Ylyi( )‘ oy )
#Ja 1is the state transition matrix for the system
in (22).

It is noted that (25) may be written in differ-
ential equation form, i.e.,

ACt,w) = cT(u(t)m(t, o) (27)

where vector m(t, w) satisfies

D(t, ©) + [§oI - VAIM(t, w) =y b (28)

with appropriate initial conditions.

It is noted that a first approximatiog to the
solution of this equation (i.e., ignore m) gives
a version of Grenier's [1] spectrum,

SPECTRA DUE TO A CONVECTING MONOPOLE SOURCE

As previously given in [7], Fig. 1 depicts the
geometry corresponding to a convecting monopole
source moving at constant velocity relative to a
fixed observer. The pregsure received by the
observer in the far field is p(t), where

- sfu(t)]
plt) = r(t)[1 - M cos e(t)i%

= C(t)sfu(t)l (29)

where wu(t)
by

is the so-called retarded time given

wt) = t - r(t)/c (30)

where M is Mach number of the source, ¢ is the
speed of gound and x(t) the distance from source

to observer, at the time when the signal received
was generated.

s(u) is the monopole source strength and is
assumed ‘stationary' in u with spectral density
having a single peak in form that allows a state
representation [7]. The functional form for, u(t)
is fixed by the (constant) speed of the monopole
and the 'flyover' geometry. The required state
parameters (e.g., transition matrix) are available
in analytic form. This provides sufficient infor-
mation for computation of both Wigner-ville and
evolutionary spectra for p(t).

The results of the computation are shown in
Figs. 2-4. Figure 2 is the evolutionary spectral
density (which is very similar in form to the
Wigner-ville spectrum). To accentuate the
difference the relative difference is computed,
i.e.,

Sgx(t, W) — Wyew(t, v)
Syx(t, w)

for w .= v, in Figs. 3, 4.

The discussion presented earlier does not
apply directly here, owing to the fact that the
modulating function is not the relatively simple
form used before. However, it is clear from
Figs. 3 and 4 that Syx(t, w) < Wux(t, w) in one
region and Syx(t, w) > Wygx(t, w) in another (for
a fixed t as w varies) and this does
correspond to changeg in S"yx broadly as
discussed before.
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