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RESUME

En utilisarit notre formulation originale de la convexité
discréte, nous concevrons un algorithme sequentiel pour sa
détection. Cet algorithme est congu pour recevoir et traiter
une image lue ligne par ligne. Cet aspect permet de la
traiter en temps reél et/ou avec economie de mémoire.

La convexité d'un objet ou d'une region est une proprieté
importante pour sa carcterisation. La determiner dans le cas
d'une image discretisée et avec efficacité de calcul doit
sensiblement enrichir nos possibilités de segmenter,de
décrire et dlinterpreter une scene donnée.

SUMMARY

Abstract: Convexity is an important pictorial property
involved in separating and characterising objects or regions.
Line scanning based algorithms are efficiently organised
computation structures for image analysis.Starting from our
former sequential algorithm based on contour following we
describe an original line scan algorithm for convexity
detection.
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1.Introduction is between 0 and 45°,

Convexity is a fundamental geometric property. In image

analysis it often plays an important role to characterise
regions or correspondig objects. It is also used in the
elimination of some ambiguities in region separation and
segmentation.

In relatively recent work a number of image analysis
algorithms took a line scanning approach(1)(4). Besides its
elegance, this approach is economic in terms of necessary
memory and efficient in terms of the necessary
computation. It lends itself easily to specialised hardware
architecture with input usually based .on electronic or
mechanical scanning to generate sequential time signals of
the pictorial field(line by line).

Whether a given property could be computed or detected
using such an algorithm is an interesting question. We do not
try to answer this general question here,but we show how to
proceed to reformulate the convexity detection problem
creating a line scan algorithm accordingly. Beside satisfying
our practical needs this,result is of important theoretic
impact in showing its existence.

In what follows we will first summarise the main results of
the work in(3) describing a contour following algorithm for
convexity detection and deriving the main conditions
determinig it.Next we will derive the corresponding
formulation and stucturing to reach the same goal using line
scans.This algorithm inspects the contour segments at two
levels of details -gross and fine- within the same scan.We
will present these as 'macro’ and 'micro' constrains .We also
derive a simple first test which is necessary but insufficient
for convexity.This gives rise to a simple algorithm based on
comparing the successive discrete cellular breadths of
region.The complexity is then discussed with the conclusion.

2.Discrete Convexity

To understand the algorithm some acquaintance with the
theoretical results concerning discrete convexity are
necessary, We will sufficiently summarise the main
formulae here, for proof and detail refer to (3).

We defined a segment as of type:

Octant I if the angle "a" of the tangent to any of its points

Fig 1. The Octant Types

Octant II if "a" is between 45 and 90°,....,Octant VIII if "a"
is between 315 and 360°,

~ o

Fig 2. Example

It was shown that: (i)on following the closed contour of a
convex region the angle of the tangent at successive points
is a monotonic function. Consequently there is a fixed order
of segment types in the sequence of clockwise contouring:

T4 1< IIi4 IV~ V<~ Vie- Vi VI

Each type of segment(extended to its extremities) occurs
only once for a complete turn of the closed contour.The
order is circularly symmetric i.e. VIII precedes I. The first
octant met could be any one depending on the starting
point.According to the shape of the contour some octant
types could be completely absent.Thus on following a convex
contour we could get the sequence ILIV,VLVILVILIl or
V,VLLILIV;...etc(see 2).This

represented by a ring state diagram.

example fig could be
(ii)On a more detailed level a segment which is constituted
of horizontal or vertical block becomes our inspected entity.
The successive lengths of these blocks expressed in number
of cells(pixels) m respects certain constrains.
Fig(3) shows the structure of a segment of octant I type.In
this case the constrains are: 3a) m cannot be > mk+2
b) if my =My, +1 thenm, ., cannot be =m,_+1
c) if m, , ;=m +1 ,and M i1 "M (i=1,2,....n),
then My ,nep CRNNOL be =1+mk+n+1
d) It can also be shown using straight lines
formulation that

if mk+l=mk+l and Myin 1= Pk (i:l,Z,..nl),

followed by Mpnl+2=Mk ,and

Myinle24] Mianlelsj  512mn))
<y +1 for convexity.

then n, must be Snj

In other words ,recursively analogous constrains
hold for the number of repetition of successive blocks of

equal length (we will call count) for sequences separated by
a constrained single block.Similarly
e) if My, 1=My-land myop=my s (21525000)

followed by mk+n1+2=mk

then m +3 cannot equal m;, ,and if

k+n
m 1=m (j=1,2,e0en)
keng+2+j  ken +l4j J=1s%5e0eny

then n, must be)/nl+l .
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Fig 3. The Block structure

3.Line Scan Macro States

Let us consider a picture with only one region without
holes.(The multi-region case only needs some extra pointers’
management).lf we scan this picture vertically from the top
downwards then at any moment we are considering a
horizontal strip. If the region is convex then,except for the
first and the last,a strip crossing the region coincides with
its contour at exactly two locations;each probably consisting
of several adjacent cells due to area discretisation.The fact
that there are two locations is because,for convexity of a
region, any straight line F'IQF’2 with P, and P2 inside the
region, Q must also be inside.Thus any sufficiently long
straight line crossing has three segments two outside and
one inside the region intersecting its contour once to enter
it and once to exit.The constrained sequence order of octant
types could be now represented by the shown state
diagram(fig 4).Due to fixed scanning direction this relatively
simpler state diagram replaces the formerly mentioned ring

state diagram.

The subsegment of the digital contour occuring at the
current line could be seen as the input to an automaton.We
have two intersections at a line giving two subsegments
thus two inputs feeding two automata the "Left" and

the "Right".At any current line the overall state of

the convexity detection system is given by both states

of these auotomata.Since they share the initial input

and the final one, and since they have similar initial

state and terminal state we could schematically combine
their state diagrams to get an interesting conceptual
representation of the line scan situation.This situation

is represented by both a left state and a right state.The
(355

goge e

case where we have more than two inputs for the same
region gives trivial concavity detection(not shown).
4.The Micro-states

Each of the formerly mentioned macroscopic state
represents a current octant type LIL..VIIl .The sequence
of octant types as implied by the Bistate diagram although
necessary is not sufficient to guarantee convexity. We can
miss what is referred to as smooth or gentle
concavities.Finer constrains are still required relating the
subsegments within each octant type.These are the
constrains summarised (for octant I) in section 2 above.

Thus for each Macro-state octant type corresponds a set of
micro-states with a lower level automaton analysing the
constrains on the subsegments.This automaton examines the
orientation and length of successive subsegment ,compares
it referring to its current micro-state,updating its micro-
state consequently.This comparison and transition reflects
the required sequence constrains.It also checks whether it is
receiving input belonging to the same octant type, or if
not,generating a Macro-state transition.

The input vocabulary set for a micro-automaton consists of
the lengths of subsegments of a given type .The automaton
or its corresponding algorithm compares the current length
wrt the former length and the relations (a to e)of section 2
decides the new state. This is either a normally updated
micro-state represented (if no transition to concave state
after simple violation) by coding the new length within the
new state (case a)or a constrained statelb,clor a
constrained state with higher level counts of the occurences
of successive equal lengths(c,d,e).For octant I we use the
flow-chart (Fig 5) which could be seen as a state diagram if
the results of the tests(»2,»1,1,0,<1,42) on the current
difference in length are seen as vocabulary symbols.

When we are examining a horizontal subsegment with its
LIV,V,or VIII

information is found on the same:line jbut for the

corresponding  micro-automaton length

other automata dealing with vertical subsegments, a
buffering stage is necessary to constitute the subsegment
from the successive single cells having the same abscissa.
The buffering stage is also used in both cases to detect
macro-state transition and activate the corresponding
micro-automaton.t also detects the lateral extrema
which(similar to longitudal extrema i.e bottom and top)
could take arbitrary length due to a sensitivity to the exact
position of the discretising cellular array ,thus avoiding the
useless or misleading test there.In the special case of unity
length an extra transition constrain of overlapping
intersection at the extremum is necessary.

5.The Differential Run Test

For a discrete binary image runs are the alternating chains

of only ones or only zeros in a line. Run length is the number
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of cells(eg 1's)in the run.lf object regions have l's in their
cells and background 0's ;and if there is one region (without
holes) in such an image,then if the region is convex we have
one l-run (corresponding to a strip of the object) per line.lt
is interesting to study how the length of this run varies from
line to line. Consider a convex region R in the real
plane.The distance D between the two points of intersection
with a horizontal line y=y, is given by:

Dly =xgly,) - x {y,)

the rate of change wrty is

dD/dy=dxp /dy - dx; /dy =g - g;

where g denotes the gradient at a given point
giving the direction of the tangent to the contour at that
point wrt the y-axis. gp and g, are the gradients at the
point of right and left intersection respectively.We will
call their difference the run gradient.

To satisfy the monotonic change condition of the tangent
for a convex contour(3), 8R has to be monotonically
decreasing and g monotonically increasing as we move in
the y direction downwards (fig 6).This means that the
difference 8R~8L is monotonically decreasing.It could have
discontinuities or stay zero as in the case of parallelograms
but never increase.This means that for a convex region the
the
ymonotonically decreases,and ends negative to close the
contour of the region.It is easy to see that the inverse is not

run gradient starts positive to create region

true: that a monotonically decreasing run gradient (gR—gL)
does not imply proper monotonicity for the individual BR
and gL.We can only profit from this property to carry out an
efficient simple first test which is necessarily true but
insufficient to decide convexity.

For a region in a discrete plane the run lengths are
integers.The gradients are represented by the lengths of the
stair steps.Monotonicity does not imply a monotonic change
in these lengths since we can have some occasional
sequence-constrained overshoots as described for straight
lines(6),(3).These overshoots have a limited value of 1
(cell).Then with a tolerance of 1 from the right intersection
and 1 from the left we have a total tolerance of 2.We can
construct our test as follows:

On inspecting the region Runs on the successively
scanned lines

a)Check that with a tolerance of ! the Run Length
increases or stays fixed until one transition point where it
keeps decreasing or fixed until the end.

b)Check that successive Difference in Run Lengths
decrease with an occasional tolerance of 2;
D) -(D;-D;_) £ 2

By occasional we mean not (equal to two) twice in a row.

ive. (Di+1'

It is interesting to see the details of Implementation
especially how we determine D when an inersection consists

of more than one cell.For details refer to (8).

6.Conclusion

We have programmed the above procedures and applied
them to a number of computer generated discrete ellipses
with or without notches.We always got very rapid and
correct results'on a microprocessor.it is interesting to note
that the simplified Differential Run test when also applied
on column scanning eliminate together with the line scan a
big number of concave cases.

It is interesting to estimate or have a feeling of the
complexity of required computation by discussing the
number of required states for the different corresponding

automata.lt is obvious that for the Bi-automaton we need
b+l Macro-states.For a micro-automaton the states number

depends on the numeric range of lengths and counts.Both are
related to the curvature of the contour and the alignement
of low curvatures relative to the cellular array.Thus
contours with long straight lines need more counts.If the
lines are nearly parallel to the cellular array the lengths of
segments are of higher values -but fewer of them -implying
anyway more states.For the Differential Run the numbers
range depend on th second derivative of the curve in the

scanned direction.
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