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RESUME

Cette publication a pour but de montrer que
des methodes de minimisation prééentéés
récemment sont un outil mathematique pour
la recherche systematigue de solutions aux
probleémes poses par l'estimation de champs
de vecteurs de déplacement. Nous présentons
comme perspective d'avenir 1'étude de
probleéemes tels que le choix d'une echelle
appropriée pour la description de
structures de niveaux gris et un meilleur
traitement des changements .dans le temps.
Nous soulignons les possibilites de faire
une symbiose entre 1'approche basée sur
1'extraction de caracteristiques et celle
baséé sur l'utilisation d'une analyse des
gradients de niveau gris en vue de

l'estimation de vecteurs de deplacement.

SUMMARY

It is argued that recently proposed
minimization approaches offer mathematical
tools for systematic investigations of
problems connected with the estimation of
displacement vector fields. Open problems
such as the choice of a proper scale factor
for the description of gray value
structures and a better treatment of the
time dependency are put into perspective.
Possibilities to bridge the gap between
feature-based and gradient-based approaches
towards the estimation of displacement
vector fields are outlined.
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1. Introduction

During the past few years, the analysis of
image sequences has established itself
firmly as a new area of scientific
research. As Nagel 81 has shown, it is
rooted in numerous application areas such
as image coding, cloud motion analysis as
one possibility to estimate wind velocity
distributions, surveillance of outdoor as
well as indoor scenes, "visual" feedback in
robotics, target tracking -just to mention
a few examples. The book by Ullman 79
represents an early link between this
emerging technical discipline and
fundamental research about how a biological
system may analyze the changes in its
visually perceptible environment.

Such a broad scope for image seguence
analysis cannot be fully covered in a
contribution of restricted size. The
subsequent discussion will therefore be
limited by the following - admittedly
arbitrary - interpretation of 'recent
advances'. Publications which have appeared
prior to fall 1982 will be mentioned only
to illustrate a particular point. The
surveys of Aggarwal and Martin 83 as well
as of Nagel 83b may provide access to the
earlier literature about image segquence
analysis by technical systems. Biological
aspects are covered by Ullman 81 as well as
Ullman and Hildreth 83. Numerous, more
specialized contributions about these
topics can be found in the recent books
edited by Braddick and Sleigh 83 and by
Huang 83. The word 'advances' will be
restricted to refer to approaches for the
frame-~to-frame correspondence based on a
mathematical formulation which facilitates
analysis and comparisons. The concentration
on what may be considered to represent a
lopsided selection hopefully contributes to
a discussion about the emergence of a
theory from which even investigations
towards more qualitative rather than
quantitative analysis shall benefit in the
long run.

The conceptual background for the

subsequent discussion will be outlined in

the next section. The notion of
'displacement vector field' will be
introduced as a tool to make important
information explicit that is captured
implicitly by the raw data of a digitized
image sequence. A minimization problem will
be formulated in section three in order to
estimate displacement vector fields from
image sequences. This formulation will
serve as a starting point to discuss
various alternative approaches. One
specific approximative solution to this
estimation problem will be used to
illustrate a relation between so-called
token- or feature-matching approaches on
one hand and gradient-based or differential
approaches on the other hand in section
four.

2, Conceptual background

A digital image sequence can represent
spatio-temporal samples of the radiant
energy flux - for example in the visible
range of the electromagnetic spectrum -
impinging on the surface of an image

sensor.

This flux originates either at light
sources or -~ usually - at surfaces which
reflect light. The radiant flux density at
the sensor surface carries information
about the illumination, the material and
the orientation of the reflecting surface.
The digitized gray value sample recorded at
a specified frame-time at a certain raster
location on the sensor surface represents
this flux density or irradiance -corrupted,
however, by sensor noise. The variation of
gray value samples from an image sequence
as a function of the position vector X on
the image sensor surface and of the frame
time t thus carries information about the
spatial arrangement of surface material,
its illumination and the temporal variation

of these entities.

In addition to the problems of static image
analysis, the analysis of image sequences
has

- to detect changes between image frames of

a sequence
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- and to interpret detected changes.

In order to reliably detect changes in the
depicted environment, one has to separate
the structural gray value variations
related to the light reflecting surfaces
from the stochastic variations associated
with sensor noise. This requires adequate
means to describe the structural gray value
variation. Modelihg the image as a mosaic
of regions with constant gray values
separated by step edge transitions is
generally inadegquate.

The more important hypotheses for the
explanation of changes detected between
image frames are the following:

- relative motion between the image sensor
and (components of) the depicted scene;
~ changes of light sources regarding their

position, strength, number, spectral and
beam formation characteristics;
- changes in shape and material properties

of the scene or its components.

Among these, relative motion between sensor
and - at least some - surfaces in the scene
is the most freguently encountered
hypothesis. Provided the images are sampled
fast enough, it appears to be an acceptable
approximation to assume that the radiant
flux recorded from a specific surface
element does not change significantly
between two consecutive frames. Under this
assumption, most changes can be described
by a space variant mapping q(X) of image
position ¥ at frame time t, to image

-

position x - HK?) at frame time tl:

g(%,1,) = g2(%) = g4(%-7%)
=g (R-TR), %) (1)

This does not apply to image areas not
visible at frame time ty - for example
image areas corresponding to background
uncovered or objects entering the field of
view between frame times tqy and ty- If such
image areas are small,'ﬁ(;) is practically
defined within the entire image frame.
Based on all these simplifying assumptions,
equation (1) implies the so-called
correspondence problem to estimate the

displacement vector field _u’(;{'). It should
be noted that we do not distinguish at this
time between various possibilities:
® The sensor is stationary (with respect
to a major part of the scene) with only
one moving object;
e stationary sensor with several moving
objects;
e the sensor moves relative to a
stationary scene;
e the sensor moves relative to a scene

containing several moving objects.

Provided we can estimate 3(?), all these
situations should be distinguished by a
segmentation of the displacement vector
field into areas each of which can be
described by its specific set of parameters
that characterize the relative motion
between the sensor and the depicted
surfaces.

3. Estimation of displacement vector fields

In general, equation (1) does not provide
enough information by itself for a complete
specification of TYGQ . Since both gl(;) and
gz(f) are assumed to be corrupted by noise,
the approximate equality of equation (1) is
substituted by a minimization requirement:

— -
choose u(x) in such a manner that

i { g2(®) - gt (%-a) )" 5 min
(2)

The expression within braces is well-known
in the image coding literature as

'displaced frame difference'.

Even equation (2) is still insufficient to
define 3X;) in general because both images
may contain curves or areas with
practically constant gray values. A human
observer will intuitively complement the
information obtainable from the local gray
value structure according to equation (2)
by a smoothness postulate.

Generalizing an idea by Horn and Schunck
81, Nagel 83c postulated an 'oriented

smoothness requirement': the displacement
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vector field'U(;S should vary smoothly in
the direction of small or no gray value
variation. In a sense, the 'oriented
smoothness' requirement extends the "no
news is good news" approach of Grimson 83
to image sequences: if the gray value
distribution does not exhibit any sizable
discontinuity, there is no reason to assume
that the displacement vector field should
have a discontinuity at such a location.
Following the arguments presented in Nagel
83c, equation (2) is replaced by:

fl42 { (g2 -ga(x-D)
+ wace ( (92 W () foin (3

where the weight matrix W represents the
influence of the local gray value structure
on the variation of the displacement vector
field, and the superscript T indicates
transposition.

W = F/artF (42)

with

8; 9 3y 3:; +§ 32.3 '&a (3&*9&35\

'
t

T = 2 + Q 2 a2
r 83y O ‘3xa@xx*9¥a) 3"*"3"3/
(#)
and
173 Uy Vx
©- v) Vi - Wy Vy (L’C>

Subscripts are used to denote the partial
derivative, i.e. 9y ='bg/ax. Recent
investigations (Nagel and Enkelmann 84a+b)
indicate that it may be advantageous to
drop the normalization factor det F in
equation (4a) and to use the matrix F of
equation (4b) directly in the place of W in
equation (3).

3.1 The approach of Horn and Schunck

The following steps allow to transform
equation (3) into the equation suggested by
Horn and Schunck 81:

(i) The weight matrix W is replaced by

the unit matrix I:
7
+trace (VZZ) I(V&f)

frace ( N uy) ( o ) &y
Ve ¥ Uy Vi 7
¢ ¢ e /

2 2

1]

&)
(ii) wWith -

g gy~ q1(%) -Gy @
gt (7 -2) = g1(%) - (o)

g2 (%) -g1(R) = 38 - g2, (&

one obtains instead of equation (3)

. - >
ﬁdsz {((Vgi)iz "‘81-{:)
+ uﬁL(ﬁ:'+£L;'+-%:'+V?j}
Dmin (%)

There are two problems with this
formulation. Near prominent gray value
transitions, the first order Taylor
expansion of equation (6a) is insufficient.
Schunck and Horn 81 derive the relation
expressed by the first term in egquation (7)
in a manner which extends its validity
beyond that expected according to the
derivation given in equation (6).

A more important argument against the use
of equation (7) is based on the
undiscriminating smoothness requirement
even across gray value transitions which
could be images of occluding boundaries and
thus curves of marked discontinuities of

the displacement vector field.

In order to avoid that displacement
estimates spill across potential
discontinuities, Cornelius and Kanade 83
deactivated the smoothness requirement in

the neighborhood of zero-crossing contours.

Yachida 83 took displacement vectors
estimated at gray value corners and
propagated them into neighboring areas with
large gray value gradients, based on the
method of Horn and Schunck 81. In order to
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suppress the propagation of displacement
estimates with large local variations, his
iterative improvement scheme used the
inverse variance of displacement estimates

as a weight.

Wu et al. 82, Davis et al. 83 propagated a
displacement estimate only along a contour
line between corner points. At each new
contour point, they combined the estimated
displacement vector from a previous contour
point with new estimates of the contour
direction and of the displacement component
perpendicular to the contour in order to
update the tangential component of the
displacement vector.

Compared with all these approaches, the one
expressed by equation (3) has the advantage
that it does not require the explicit
Getermination of gray value transition
fronts such as edge lines or zero-crossing
contours. Moreover, the local gray value
structure has influence on the displacement
estimate directly rather than indirectly
through a weight factor given by the
inverse variance of the displacement
estimate as in the case of Yachida 83.

3.2 The approach of Hildreth

Hildreth 83a+b minimized the sum of two
terms integrated along a zero-crossing
contour. The first term is the squared
difference between the estimated and the
'measured’ displacement component
perpendicular to the contour. The latter
one is determined by the following

62):

ut - (g2 -9Y) I @

where g'

expression (Hildreth 83b, p.

represents the convolution of the
gray value g(?) with the Laplacian of a

g = gx V€ - g% (G * Gyy) (99
and
(X xy?
G(z) - 2 2ot (99

2res?

The second term - expressing the smoothness
requirement - is given by the squared
derivative of the displacement vector field
with respect to the arclength along the

zero-crossing contour.

If'g(s) represents the normal to the zero-
crossing contour for the arclength s, the
integral to be minimized according to

Hildreth 83b - equ.

be written

@ds {Q(EZT)—’)’ —LL’L)L +(.§—S‘-‘-)Lf %")7 D min
gero-Clossin (4_0)

contboter

Equation (3) with W given directly by the
(4b)
to equation (10) by the following steps:

(25) on page 46 - can

matrix F - see equ. - can be related

(i) The convolution of g(?ﬁt) with the
Gaussian G is replaced by g(¥,t) in
equation (8) and (10).

(ii) Since we now integrate along the

zero-crossing contour of {?g instead
of V?g',

V% = Gu + Qyy =0

we have

oF Gux =" 953
(41)

This simplifies the matrix F to

9y 9%

Gs*Gs O
= . + al
'gxga -gx 0

9&*9)‘;
(12)

at a zero-crossing

T

éﬂ'o"
crpssma

3 2 - 2
Since Iex = gyy

contour of Y*g, it can be shown by a
short calculation that

2 2 2 z
gxx +9x3 = 3)(3 +€33 =2

where &£ represents the eigenvalue of

> 43

the diagonalized Hessian at a zero-
crossing contour

Jxx

fxy

e 0

= 14
o z) @

Ixy
ey
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Using equation (12) and (13), one
obtains for the oriented smoothness

term in equation (3):
Vid 2
Hrace ((V{Z‘j F(VL'Z)) = (ga Uy -84« “a>
+ (93 x - x VQ)L

If the zero—crossing contour is
straight, then #? = 0 and the
gradient is perpendicular to the
zero-crossing contour (see Nagel
83a). In this case, the vector
(gy, —gx)T is tangential to the zero-
crossing contour. If the zero-
crossing contour is given by'§(s),
the tangent to the zero-crossing
contour is (dx/ds, dy/ds)T. We thus
may write along a straight-line zero-

crossing contour

(g, ux 'ﬁx“a> =]V81(“x‘§‘g +Ua§%)

- |vg| 4% (16)

If we now assume that, even for
curved parts of the zero-crossing
contour, the gradient Vb will be
virtually perpendicular to the zero-
crossing contour, we may write
instead of equation (15)

trace ((VQ’)‘T’F (V‘-‘: ) = / Vg / L((%%)Z ¥ (%)z)

+-Qf?€zé%:*lﬁify&z+%;>

(13)

(iii) Significant contributions to the area
integral of equation (3) with F
instead of W will only occur when the
first and second derivatives of g(?ﬁ
are large, i.e. in the vicinity of
zero-crossing contours. Neglecting
the contributions to the integral (3)
in areas with small gradients will
essentially reduce the area integral

to a curve integral along a zero-

crossing contour — implying, of
course, a 'reasonable' gray value

structure.
(iv)

Using a substitution analogous to

equation (6), we thus obtain

jfdz{ (526 -91(%-))"

+ o trace(72) F (V)

= § as { (g0 1-2))

2er6-CTOSS N

Sl (8 )

2 2 2 2
+ xla.aaea(“x Uyt Uyt Va)

(182)
z 27> _ 32—— 1 2
=,7® ds ]Vgi] (uh —/—vg%—)
2ere—Clossin
contour

+ % (%y*(%g)z-

2 Gf?ta' (L(a+lL;21—V;E+V”? = mih
o ugaL It

A comparison between equations (10) and ’

(18b) now allows to illustrate the

difference between the approaches of

Hildreth 83 and Nagel 83c.

If we replace in equation (8) the
convolution of the gray value g with the
Laplacian of a Gaussian by g itself, we

e - (g2 -gt)/1vgel @

The difference between equations (10) and
(18b) thus reduces to two aspects:

(a) Equation (18b) derived from equation
(3) weighs the integrand by the square
of the gray value gradient: the larger

the gray value gradient across the
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zero-crossing contour, the more
stringent is the local smoothness
requirement. The approach of Hildreth
according to equation (10) does not
know such an arclength-depending weight
for the integrand.

(b) At sharp corners of the zero-crossing
contour - i.e. at locations with large
values of &* - the integrand of
equation (18b) requires that the
derivatives of both components of the
displacement vector remain small in
order to minimize the integral. In
other words, the approach of Nagel 83c
implies that the displacement vector
field is locally (almost) constant at
gray value corners. This is gratifying
because it justifies a posteriori an
approach to estimate the displacement
vector for gray value corners based on
the assumption that the displacement
vector is constant in a small
environment around a gray value corner
- see Nagel 83a.

3.3 The approach of Prager and Arbib

Prager and Arbib 83 have developed a
heuristic approach for the estimation of a
displacement vector field which is based on
feature-matching but incorporates a
smoothness requirement. According to their
notation, an assertion P for having found a
feature at image position PX with
attributes PT is denoted by the tupel (PX,
PT). An analogous assertion for the next
frame is denoted by Q0 = (QX, QT). These
authors introduce a heuristic distance
function to grade the match between tupel
Q(i) from one frame and tupel P(j) from the
preceding frame, with a displacement
XX(:) = QX() - PX() @3)

Based on these concepts, they directly
introduce a heuristic iteration formula for
the estimation of DX(i):

DXy, = DX, + ) B,(D) +pBl) @

with

BL) - —— Dw M) -k )
Z‘Nw‘n JeN

where the sums extend over all tupels j in
a neighborhood around tupel i, and wij
denote heuristic weight factors. This term
represents the smoothness requirement: it
will contribute to a correction for Dx(i)kf1
in the (k+1)“iteration unless DX(i)kis
given by a weighted mean of surrounding

displacement estimates.

The remaining term
B,6) = QX() ~A[EW); P - (D) (29

contains a function A which describes the
position of a feature assertion P from the
preceding frame most compatible with a
constructed assertion E(i) = (QX(i)-
DX(i),T) characterizing an expected match
for Q(i). Whenever the current displacement
DXk(i) deviates from the vector connecting
the position of Q{(i) with its current best

. match P according to A.[f(i); g], a

correction B2(i) will modify ka(i) in
order to obtain ka+l(i)' Due to the
numerous parameters in this entire
approach, it is difficult to evaluate it
for a comparison with the minimization
approach given by equation (3).

The features are corners, edge elements,
and points of high contrast. These features
are characterized by heuristically
introduced masks which are convolved with
each image frame to obtain assertions P.

3.4 An example from image coding

Movement compensation for image coding
requires the estimation of displacement
vector fields. Basically, the square of the
displaced frame difference given by the
integrand of equation (2) has to be
minimized for this purpose. An approach
based on the Newton-Raphson method will
provide faster convergence than a gradient
descent approach - see, for example,
Bergmann 83. It requires, however, a
starting estimate which has to be closer to
the solution than in the case of a gradient
descent approach.




552

Recent Advances in Image Sequence Analysis

Progres recent en analyse de sequences d'images

H. NAGEL

15 T

Cafforio and Rocca 83 illustrated the
theoretical background for such approaches
and studied a smoothness requirement in
this context. They aisumed that a
displacement vector U(i)} has to be
estimated for the i-th block of pixels. Let
ﬁ(i—l) denote the estimate derived for the
preceding block. %(i) should represent the
estimate derived from the data of the
current block only. If the block size is
small compared to the image regions
expected to exhibit essentially the same
displacement, it is reaionable to combine
the preceding estimate U(i-1) with'V(i) for
the current block in order to obtain a more
reliable estimate U(i) for the current
block:

L:Z(t') = A 'L:‘L’(t'-i) s BV (@)

The weight matrices A and B in eguation
(22) have been derived by Cafforio and
Rocca 83. They depend on the gray value
distribution within the two blocks and on
the autocorrelation function of the true
displacement vector field. The authors
develop a stochastic model describing the
displacement vector field as a mosaic of
areas each with an independent constant
randomly oriented displacement vector. Its
magnitude is considered to be another
random variable with zero mean and a
probability density function uniformly
decreasing for large arguments.

Although such an approach yields quite
acceptable results for image coding
applications, it does not appear to be
appropriate if the displacement vector
field should be evaluated, for example, in
order to obtain a three-dimensional
description of moving objects and their

trajectories.

3.5 The scale problem

In order to evaluate an equation which
contains derivatives of the gray value
function g(X,t) with respect to x, y, or t,
one has to specify an environment for the

computation of these derivatives from the

digitized samples. If the mask size is too
small, the estimate for the derivative will
be influenced by noise. Too large a mask
size will not allow to estimate the local
gray value structure. Most mask sizes so

far have been chosen ad hoc.

A more systematic approach convolves the
image with a Gaussian - see equation (9b).
A spatial derivative of the convolved image
can be computed by convolving the image
with the corresponding spatial derivative
of the Gaussian. A choice for the standard
deviation & of the Gaussian guides the
choice of the mask size for the derivative
operator: it should be large enough so that
the functional value for the derivative of
the Gaussian can be safely neglected

outside this mask.

Since the extent of characteristic gray
value structures may vary within an image,
the exclusive use of a single value for the
scale parameter & will be insufficient in
general. One solution to this problem could
be seen in the systematic analysis of an
image with a set of different scale
parameters - in analogy to approaches
studied for the estimation of stereo
disparities (see, e.g., Marr 82). Results
obtained for different scale parameters
could be combined in a hierarchical manner.
A strictly top-down approach from large
scale parameters to smaller ones may lead
to difficulties because displacement
estimates obtained at a larger scale may
give inappropriate start values at smaller
scales, for example around discontinuities
of the displacement vector field. A multi-
grid approach whereby intermediate
estimates obtained at several scales are
communicated in an iterative manner up as
well as down along a scale hierarchy
appears to be the method of choice. It is
well known that multigrid methods offer a
significant computational advantage for the
numerical solution of partial differential
equations. Terzopoulos 83 provides examples
for the reconstruction of smooth surfaces

from sample points.
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Using a small set of different values for
the scale parameter G may appear to be
mainly a computational technique employed
in order to obtain faster convergence.
There is, however, another aspect which
appears worth studying it in more detail.
Witkin 83 began to study how the
convolution of a function with a Gaussian
behaved as a function of the scale
parameter &. This may offer a method for
the systematic investigation of gray value
structures in images. The implication for
the estimation of displacement vector
fields have to be evaluated.

The idea to emphasize spatial gray value
variations at a certain scale by convolving
an image with a bivariate Gaussian has been
extended by Buxton and Buxton 83 to the
temporal axis:

g"(z,t) = far [[4F 9(€.%)
. (f)%e’“w £eele ]

@3)

The standard deviation for the spatial
variables corresponds to

_ 1
{ 20¢

and for the temporal variable to

ex)

(Spal-ial,

s - 1

femporal el 2o (Z L/'s)
It appears advantageous to interpret the
constant ¢ with the dimension of a velocity
as the factor determining the relation
between the scale factors for spatial and
temporal coordinates. These authors
analyzed the zero-crossings of V?g" and
found that the location of zero-crossings
of Y?g" shifts with time in a manner that
depends on the scale parameter X. It thus
is no longer self-evident how to combine
zero-crossings of V29" obtained for
different scale parameters ®. Buxton and
Buxton 83 solved this problem by
substituting the d'Alambertian operator for

the Laplacian. They investigated the zero-

crossings of

—DZ{ 6()?"&)*30?’,1%) (25)

where [J* is given by

Apart from the important property that a
gray value transition will have zero-
crossings at the same position for
different scale parameters, it turned out
that another type of zero-crossing shows
up. It is related to the relative motion
between the sensor and the (surface,
material, illumination) discontinuity in
space which causes a gray value transition
to appear in the image. In the periphery of
the field of view, these two types of zero—
crossings may interfere with each other.
Accdrding to Buxton and Buxton 83,
observation of such an interference or
'cross-over' effect would offer an
alternative way to infer the distance of
the spatial discontinuity from a moving
sensor. It still has to be investigated to
what extent these ideas can be exploited
for the analysis of image sequences. It
clearly represents a more systematic
approach towards the problem of relative
scaling between the temporal and the.
spatial coordinates. A rather heuristic
approach to temporal smoothing for the
benefit of more reliable displacement
estimates has already been described by
Yachida 83 who averaged displacement
estimates iteratively across three

consecutive image frames.

4. The
Many approaches towards the frame-to-frame

'feature' problem

correspondence problem first attempt to
extract features from each image frame. In
a subsequent step, matching of such
features is attempted. The work of Prager
and Arbib 83 discussed in section 3.3
provides just one of numerous examples for
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such an approach. Rather than portraying a
strict dichotomy between feature-based and
gradient-based correspondence methods, this
section will attempt to show a common
mathematical basis for the most important
features: corners, edges, and isolated gray

value extrema.

Our discussion starts from equation (2) -
i.e. we neglect the smoothness issue for
the moment. Let us assume that an initial
estimate 3; is available which should be
refined by the determination of a small
correction rector DG = (Du, Dv)T:

2 - LR +IZR) R

As shown by Nagel 83a+c, one can derive the
following equation for Dy:

CDiw - - ( g2(%) - gi(f—tﬁ))Vgi(x"-Z)
@8

The averaging process denoted by the
overbar on the right hand side of equation
(28) is extended over an environment around
the position —é:which is required to
estimate the spatial derivatives of gl(gp
occurring in equation (28) - see section
3.5, The coefficient matrix C is given by
(writing g instead of gl):

gxz gx g% . gxi t Qx; gxa (@M-r 933)

= ., |[ta > 2
dy dy 9y (Qxx’“ 973) Oxy *Guy
(9)

It should be noted that C -= W = F/det F as
given by equations (4a + b). This result
has been derived by approximating the gray
value distribution of gl(?) around §; by a
Taylor series expansion retaining terms up
to the second order in (§L§;). It is
illustrating to see that this coefficient
matrix captures essential information about

the gray value structure around QL.

4.1 Gray value corners

Nagel 83a - see also Kitchen and Rosenfeld
80 + 82 - has shown that a gray value
corner can be characterized as the location
of maximum planar curvature in the locus
curve of steepest gray value slope. If the
local coordinate system is aligned with the
principal curvature directions at 9(3;) -s0
that gxy
defined by the following requirements:

gy = max gy * 0 (3051)

ux =0 Gyq =1 (309

Equations (30a) express the fact that the

= 0 -, a gray value corner may be

maximum gradient is oriented in one

principal curvature direction - here taken
to be x. The zero-crossing of Iux implies
that 9y is indeed a maximum. The non-zero

value of g implies that the locus line of

Yy . >
zero-crossings has maximum curvature at Xye
One thus obtains the following coefficient

matrix at a gray value corner:

4x 0
- (31)

’Corrzer 0 azaa;

Since according to equations (30) the
coefficient matrix is non~singular at ;;,
it can be inverted to obtain a closed form
solution for the correction vector D3 at
such a location. An experimental evaluation
of this approach by Nagel and Enkelmann 82
has yielded satisfactory results - see also
Dreschler-Fischer et al. 83.

The position of maximum planar curvature in
contour lines has been selected as a
feature point by Yam and Davis 8l1. More
tecently, Lawton 83 employed corners in
zero-crossing contours as feature points
for a heuristic interframe match. As has
been pointed out by Nagel 83a and Dreschler
and Nagel 82, the point of maximum
curvature in a zero-crossing contour of Vzg
= gyye t gyy does not coincide with the
location of a gray value corner defined by
equations (30). It appears, however, that
both approaches pick predominantly the same
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gray value structure selected intuitively
by a human observer -~ provided, of course,
that the derivatives are determined at the
same scale. Recently, Zuniga and Haralick
83 reported some variations on the gray
value corner concept described by Kitchen
and Rosenfeld 82 and Nagel 83a and first
used by Nagel 83c for closed-form frame-to-
frame matching.

4.2 Isolated gray value extrema

Local maxima or minima of the gray value
distribution offer an additional well
defined feature to be matched from frame to
frame. Local extrema can be characterized
by vanishing gradient magnitude with
nonzero values for the corresponding second
derivatives. One thus obtains

gxi O \
= as )

32
ex remum 0 9;3 J ( )

Again as in the case of the gray value
corner, the conditions of a gray value
extremum ensure the nonsingularity of C so
that it may be inverted to obtain a closed
form solution for both components of the
displacement estimate correction ﬁ?. Prager
and Arbib 83 employed isolated extrema as

feature points for interframe matching.

4.3 Edge lines
In the case of a straight line gray value

transition front, the second derivative
with respect to y will vanish in an entire
environment around the zero-crossing of Iyx
which characterizes the curve of steepest
slope; i.e. maximum Vg = (g4s ©). In this
case, the matrix C degenerates to:

G 0
G, -

ha%hflmf o 0

(3 3a)

reflecting the well known fact that one .
cannot determine both components of §
uniquely at a straight line gray value

transition. This remains true even for the
area around the zero-crossing of Iyx'®

sz +a g; o

Csha; Lt line

neighbor kood 0 0

(335

There are numerous examples for interframe
matching schemes based on line elements. It
is interesting to see how a slight bending
of the gray value transition front will
result in an ill-conditioned version of C.
Let us assume that g is small. In this
case the gradient will still be essentially
perpendicular to the zero-crossing contour
of Ix? i.e. Iy will be large. As a
consequence, one eigenvalue of C - saye -
is much larger than the second one, say A.

We thus have

det (
trace G =

- A

e+ A

(34a)

(340

det ¢ - e A ~ 4 _’L (35>
[t #race C C2) .

fec A< 3t

Since the left hand side of equation (35)
represents a measure invariant with respect
to rotations of the coordinate system, ill-
conditioned matrices C - i.e.
insufficiently curved gray value transition
fronts - can be detected without
diagonalizing C. This has been demonstrated
by Nagel and Enkelmann 83.

5. Conclusion
The preceding sections attempted to support
the following hypotheses:

(1) As long as a strictly two-dimensional
approach to the estimation of a
displacement vector field is
considered, a minimization approach
according to equation (3) appears to
offer an acceptable solution. It
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incorporates in a natural manner the
match between significant gray value
structures as well as a smoothness
criterion for the displacement vector
field. The latter one leaves enough
flexibility to account for
discontinuities at prominent gray value
transition fronts.

(2) The approach formulated by equation (3)
incorporates in a natural manner the
influence of the most basic features
found in many token-based or feature-
based approaches to the corresponding
problem, namely corners, isolated gray
value extrema, and line elements. It
thus offers a road to unify feature-
based and gradient-based approaches.

Equation (3) does not contain any clue how
to cope with the scale problem. It treats,
moreover, sampling along the temporal axis
as a basically discrete problem whereas
sampling along the two spatial image axes
does not show up explicitly in the equation
(3). It is hoped, however, that the
discussion of this minimization approach
could put these two problems into the
proper perspective and to indicate

directions how they could be attacked.

The overriding hypothesis is that tools
emerge which facilitate a systematic
investigation into the problem of
estimating displacement vector fields. Such
more systematic studies may provide the
groundwork to justify the design and
development of special purpose computer
structures which could facilitate the
estimation of displacement vector fields

from image seguences in real-time.

The contents of this contribution
represents a deliberate gamble on the part
of the author to omit many very interesting
aspects from discussion in order not to
overcrowd the picture by too many details.
There may be readers who are going to miss,
for example, references to attempts at
three-dimensional interpretations of
changes observable in image sequences.
Recent surveys by Ullman 84 and Nagel 84

are offered as a way to access literature
about this topic. It should be pointed out
that eventually a strictly two-dimensional
approach to the estimation of displacement
vector fields is inappropriate. Somehow
those problems neglected for the derivation
of equation (3) have to be attacked,
especially the change in radiant flux from
a surface element which moves relative to
light source and sensor, the uncovering of
background, the appearance or disappearance
of scene components along the boundary of
the field of view. These topics are left to
the future.
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