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RESUME

Le bruit de granularité cohérente, ou "speckle",
se produit dans toutes Tes images cohérentes d'ob-
jets diffus. Soit f(x,y) exp i¢(x,y) un objet dif-
fus : ¢ est une phase aléatoire, seul Te modulie A pré-
sente un intérdt lorsgu’il s'agit de former une image.
La formation d'image cohérente, que ce soit dans les
domaines radar ou ultra-sonore ou en &clairage laser,
peut étre décrite comme une convolution de 1'objet dif-
fusant par une réponse percussionnelle. Le speckle est
dt & 1'interférence des diffuseurs &lémentaires dont
les réponses percussionnelles se chevauchent et affec-
te la qualité et Ta résolution de 1'image. Le probléme
de la réduction de speckle se présente donc comme 1'es-
timation du module T & partir de 1'image bruitée.

L'analyse des statistiques du speckle, et en par-
ticulier de 1a corrélation du speckie méne & des tech-
niques de réductions adaptées aux différentes situa-
tions. Ces techniques sont étudiées ici dans le cadre
d'un modéle d'image & moyenne et variance non station-
naires.

Dans le cas optique, seul 1'éclairement de 1'image
est accessible ; si 1'image est sous-échantillonnée,
1'information de corrélation du speckle est perdue, et
le bruit est alors blanc et multiplicatif. Nous utili-
sons dans ce cas, d'une part un algorithme de filtrage
Tinéaire optimal au sens des moindres carrés locaux,
d'autre part une estimation MAP, plus précise, qui
prend en compte la ddp du bruit. Dans le cas d'un
échantillonnage suffisant d'un speckle optique, nous
employons un filtre de Kalman réduit qui constitue une
approximation du filtrage 1inéaire optimal au sens des
moindres carrés et allége la charge de calcul.

Dans le cas du speckle radar ou sonar, on accéde
d la phase aussi bien qu'au module de 1'image bruitée.
Une estimation MAP itéractive qui utilise 1'informa-
tion de phase comme 1'information de module est possi-
ble.

Des résultats de simulations sont présentés pour
les différents cas.

SUMMARY

Speckle noise occurs when a scattering object is
imaged coherently. Let us describe a scattering object
as f(x,y) exp i¢(x,y), ¢ being a random phase due to
object roughness : only the modulus A is of interest
for imaging purposes. Coherent imaging, in the radar,
sonar domains or in laser illumination, can be des- -
cribed as a convolution of the scattering object by an
impulse response. Speckle arises from interference bet-
ween the scatterers over the impulse response area and
affects image quality and resolution. Speckle reduc-
tion therefore appears as the problem of estimating
the modulus f from the noisy image.

An analytical investigation of speckle statis-
tics, and in particular of speckle noise correlation
leads to various speckle reduction techniques adapted
to the different possible situations. They are deve-
Toped here in the context of a non-stationary mean,
non-stationary variance image model.

In optical speckle,only theimage intensity is detec-
ted ; if the image is undersampled, so that no speckle
correlation information is preserved, the noise is
white, multiplicative. We develop both a local linear
minimum mean square error algorithm and a more accura-
te MAP estimation taking into account the noise pro-
bability density. In the case of adequate sampling of
optical speckle data, we approximate linear minimum
mean square filtering by a reduced update mowing
window Kalman filter to reduce computation.

For radar or sonar speckle, modulus and phase are
available. An iterative MAP procedure that uses both
amplitude and phase information appears to be tracta-
ble.

Simulation results are shown for the various
cases.
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I - INTRODUCTION

Coherent imaging of scattering objects produces
speckle. A scattering object may be described as a set
of independent scatterers. When illuminated, the scat-
terers diffract wavelets with mutually independent
phases. Speckle is a physical consequence of the abi-
Tity of these wavelets to interfere when the illumina-
ting beam is coherent. While early observations of
speckle can be traced to the eighteenth century, recent
developments promoted the investigation of the phenome-
non. In particular, speckle is present in the images of
Taser illuminated scenes as well as in the radar and
sonar domains. Speckle has been successfully applied to
surface roughness analysis and metrology {1,2} ; in
imaging situations however, speckle is detrimental to
image quality and resolution : it has been estimated
that a fully developed speckle reduces resolution by a
factor at least 5 {3}. It is therefore a sensible geal
to try and reduce speckle.

The most effective speckle reduction method is
without doubt the incoherent superposition of a large
number of statistically independent coherent images of
the same object : this amounts in fact to incoherent
imaging and may be called a priori speckle reduction.
When only one or a limited number of such speckled ima-
ges are avaijlable, a posteriori speckle reduction me-
thods must be used. This is the case considered here.

Previous approaches to speckle reduction include
Tow pass filtering {4} and smoothing of multiplicative
noise {5-10}. Since the physical properties of speckle
are now well understood and verified {11-12}, our ap-
proach has been to combine the physics of speckle
statistics with a number of available effective noise
smoothing methods ; this resulted in several algorithms
adapted to the various situations in which speckle
may occur. Part of this work has already been publis-
hed {13-16}. In the present communication, we summari-
ze and illustrate our work, which up to now has been
restricted to the so-called "fully developed speckle".

In the next section, we introduce briefly the ba-
ses of our work : the statistics of speckle and a sui-
table image model. In sections III and IV, the cases
of optical and of radar or ultrasound speckle for sin-
gle images, will be examined and simultation results
will be shown. In section V, the extension to several
independent 1images will be mentioned., Section VI
contains concluding remarks.

IT - SPECKLE NOISE AND IMAGE MODEL

1)} The statistics of speckle :

Figure 1 schematically depicts a typical situa-
tion of speckle formation : f(m,n) exp i¢{m,n) is a
scattering object : ¢(m,n) is the random scattering
phase and the modulus fmn is the only quantity of

intensity
imaging system g = 'bF
f exp(ie) 8 sy
scattering ob ject image

Figure 1. Coherent imaging leads to speckle.
(The imaging system doss not need to be a lens).

interest in imaging. Due to diffraction by the system
aperture, represented in figure 1 as a lens, the image
b(m,n} can be represented as the result of the convolu-
tion of the object by the imaging impulse response
h(m,n) -

b(m,n) = £ f(m-i, n-j) exp i ¢ (m-i, n-j) h{i,j) (1)
1.3
In equation 1, the discrete double summation is
extented over the entire support of the object and the
impulse response.

The statistics of b(m.,n) given f{m,n) may be deri-
ved from those of the phase ¢(m,n).0f particular interes
is the so-called "fully developped” speckle case : when
each phase ¢(m,n) is equally distributed over 0 - 2m,
and when moreover the correlation between neighbouring
phases extends over much less than the impulse response
area. Then each image pixel b(m,n) obeys gaussian cir-
cular statistics. Moreover, the autocorrelation of
b(m,n) given f(m,n) is

£ [b{m,n) b¥(m,n)] =
= h{n-i, n-3) him'=i,n'3) £(3,5) (2)
1,]

Therefore, as opposed to many other types of noise
in images, speckle noise is not only signal dependent,
but aiso correlated.

Due to the quadratic nature of optical detectors,
optical speckle data can only be iiluminance data :
the measured quantity at each pixel is the squared mo-
dulus of b{m,n) :

g(mn) = |b(m.n) |2 (3)

It follows straightforwardly from equation (2} that
the statistical mean of g{m,n) is the incoherent image
of the same object through the same instrument :

I(m,n) = E{g(m,n)] =1.Zj h% (m-i, n-) £ (i.J) (4)
In ultrasonic and radar imaging, the complex am-
plitude b(m,n) itself can be measured.

More elaborate statiscical properties of fully de-
velopped speckle have been studied (see for example
references 9 and 11) but will not be recalled here for
the purpose of conciseness.

2) Image statistics :

As has been known since the work of HUNT and
CANNON |17], image enhancement can considerably benefit
from the use of an image model. Instead of a signal in-
dependent, stationary speckle reduction method, we
therefore propose to incorporate adaptivity through an
appropriate model describing the statistical properties
of the object modulus f(m,n). The complete statistical
properties of the complex amplitude b(m,n) can then
straightforwardly be derived from those of f(m,n) and
from the conditional probabilities such as those of e-
quations 2 and 4.

In order to allow nonstatonarity in the first and
second order image statistics while keeping the compu-
tational load to a minimum, we introduced a nonstatio-
nary mean, nonstationary variance model which has been
applied to images degraded by various types of noise
(additive, multiplicative, Poisson) with or without a
linear space invarjant blur }13,18]. In the absence of
blur and of noise correlation, the local Tinear minimum
mean square estimator derived from our medel is a point
operator. In the following sections, we apply the model
to the various cases of speckle reduction.
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II1 - SPECKLE REDUCTION TECHNIQUES FOR INTENSITY
SPECKLE IMAGES

As pointed out above, speckle noise is correlated
and it is advisable to take the known cor=::gtion pro-
perties of the noiseinto account in the prbcéssing.
Nevertheless, we shall begin in subsection 3.1 with
the simpler case of uncorrelated speckle data ; this
corresponds to undersampled data, where the sampling
is so coarse that the noise correlation is effectively
Tost. The general case of correlated speckle will be
examined in subsections 3.2 and 3.3, where two possi-
ble speckle reduction algorithms will be described.

3.1) Independent speckle samples :

In this subsection, we consider speckle reduction
techniques for independent speckle samples. The adap-
tive noise smoothing filter for speckle reduction is
shown to be the same as in the multiplicative noise
case. A nonlinear MAP filter which considers the ne-
gative exponential distribution of speckle intensity
is then derived. The MAP estimate is a real root of a
cubic equation and can be easily calculated.

The gaussian circular character of the speckle
noise amplitude b(m,n) (see section II) implies that
the speckle noise intensity g(m,n) follows a negative
exponential distribution with probability density
function (p.d.f.) for a given object f(m,n)

|
P(g(m,nY Ik “2”5

A n

s Gi\ifisiiy > U
(5)

» g(m,n) <0

where the quantity I(m,n) is the variance and the m-
ean of g(m,n) given by eq. (4). It depends on the
object f(m,n). According to eq. (5), g(m,n) can be
represented by a multiplicative noise model :

g(m,n) = u(m,n) I(m,n) (6)
where u(m,n) obeys the p.d.f.
p(u) = exp(-u) , u>0 (7)

s u<0
whence the conclusion :

for uncorrelated intensity speckle data, the )
noise is muitiplicative ; 1t has negative exponential
p.d.f., and in particular, unit mean and variance.

This justifies the use of multiplicative noise
smoothing techniques for such data, as has been pro-
posed in references 5-10. Using our nonstationary
mean, nonstationary variance image model, we derived
an adaptive noise smoothing filter which can be used
in particular for multiplicative noise |18|. However,
this adaptive noise smoothing filter only uses the
Tocal mean and local variance of speckle, and is the
optimal MMSE filter for Gaussian statistics only.
Since the speckle intensity g(m,n) has a negative ex-
ponential distribution that is very different from
the Gaussian distribution, it is useful to consider a
nonlinear MAP (maximum a posteriori probability in
Bayes' sense)filter for better performance.

In our model, the conditional mean I(m,n) of the
speckle intensity depends of the object f(m,n) 3 since
f(m,n) is considered random, so is I(m,n) and it obeys
the Gaussian p.d.f.

(11

exp
2 o1

-1/2

P(1) = (2r o) (8)

Where T and o are the nonstationary mean and

variance of I(m,n). In this equation as in equations
(9~10) the indices m,n have been dropped for concise-
ness. The two quantities T and o, may in practice be
estimated from the local neighbo;hood of each speckle
image point and thus require no additional a priori
knowledge. .

The MAP estimate of I(m,n) is obtained by maximi-
zing with respect to the variable I the a posteriori
p.d.f. :

P(1/g) = P(gélé P(1)

It is important to note at this point that since
both the conditional mean I{(m,n)} and the speckle noise
g{m,n) are uncorrelated with the present assumptions,
equation (9) does not need to be considered globally
over the image but rather is valid for each pixel indi-

(9)

© vidually. This is not true for correlated speckle data

{see the following subsections) or for a correlated
image model.From eq (6) - (9), it is easy to show that
the MAP estimate I (m,n) of I{(m,n) is the only root of
the cubic equation :

_g? 1 - a1 . 0

(10)

I I 07

whose value is between T and g. Let us note paren-
thetically that the maximum likelihood estimate of
I(m,n), obtained by maximizing over I P{g/I) rather
than P(I/g), is the speckle image g(m,n) itself and
therefore is of no interest for speckle reduction :
here, the image model plays a crucial role for the
smoothing and therefore a proper estimation of the local
mean and variance T and 9y is of major importance.

We now present some simultation results for this
case. Figures 2 a-g correspond to uncorrelated intensi~
ty speckle data. 2a is the original image, 2b the un-
correlated intensity speckle image, 2c the 7 x 7 Tlocal
neighborhood image used to obtain a first estimate of
the local image mean and variance, knowing the mean and
variance of the speckle noise. The two filtering methods
described above have been tested on these data. Figure
2d is the adaptive noise smoothing filter, which is the
minimum mean squared error for gaussian noise. If 2d is
used to obtain an improved estimate of the local image
mean and variance, the filtering can be iterated, yiel-
ding the improved image 2e. Further iteration shows
little improvement. Figure 2f is, similarly, the first
MAP estimate and figure 2g is the second iterated MAP
estimate. Comparing this picture with figure 2e, we note
that the MAP estimate seems to put a number of black
dots on the sharp transition region of the image while
the adaptive noise smoothing estimate puts white dots.
This difference is because the MAP filter considers the
negative exponential distribution of speckle intensity
and tends to "quess" on the low intensity side if the
Tocal variance estimate is large.

3.2) Correlated speckle samples

If a speckle intensity image is adequately sampled
so that the covariance structure of speckle is preserved,
in principle, this information can be used to further
reduce speckle noise.

Like in the previous section, we could try to deri-
ve the optimal MAP filter. In the case of correlated
samples however, only the two-point joint p.d.f. of
speckle intensity can be expressed analytically [13],
and even then, the maximization of the MAP is a non tri-
vial problem. We therefore restrict the present work to
the sTightly less efficient approach of Tinear minimum
mean square filtering ; let us stress once more that

with our image model,the mean squared error is minimi-
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Figure 2 :

Speckie reduction, simulation results :
uncorrelated intensity data. a) Original ;

b) Speckle image ; c) 7x7 local mean of b ; d) adap-
tive noise smoothing filter, first iteration ;

e) second iteration ;
g) second iteration.

f) MAP filter, first iteration;

see figure 3 at the end of the paper.

zed locally, not globally, thus making the whole pro~
cess adaptive to the scene. We refer to it as the local
linear minimum mean squared error (LLMMSE) filter. Un-
derTining the notations for lexicographically ordered
image data, we can express the estimate f of the object
f under the usual form 119]

Hhere T and g denote the ensemble mean of f and g and
Ce and C tﬁé cross-correlation and auto-correlation

9 matrices. From the knowledge of the speckle
statistics and from our image model, all the quantities
needed can be obtained directly from the speckled image;
however, the filtering requ1res the 1Eversion of matrix
Cg, which is of size N2 x N2, where NZ is the number of
pixels in the image. The computational load is therefo-
re rather demanding.

t=T+c

Figure 3a shows the same original image as figure
2a ; figure 3b shows the simultated speckled image gene-
rated with a point spread function of triangular shape,
separabTe in xand y and extending over a 5 x 5 pixel
area ; the bandpass is therefore roughly 5 times smal-
ler in this image than in figure 2c and the pixels in
any neighborhood are strongly correlated. Figure 3d is
the 7 x 7 local mean of 3c. Figure 3e shows the proces-
sed image obtained by applying the LLMMSE filter to the
image ; to make the computation tractable, the image
was sectiorned dinto squares of size 12 x 12 ; the squa-
res were processed separately and overlapped to avoid
boundary effects. For the 256 x 256 pixel image, the
processing time on a DEC KL 10 was 4 hours. However, it
is apparent that the processed image is at least as good
as those of figure 2 d,e,f,g, although the speckle is
much coarser in the present case ; this illustrates the
usefulness of taking speckle correlation into account
in the speckle reduction algorithm.

The LLMMSE filter just introduced is nonrecursive
and computationally demanding even if a sectioning me-
thod is used. It is therefore worth while to consider
a recursive implementation as an approximation of this
filter both for fast computation and better adaptation
to Tocal processing. We therefore developed a speckle
reduction approach in the forma 1lism of recursive fil-
tering and implemented it using a reduced update algo-
rithm similar to Woods' |20| where only correlated
points are taken into account in the gain vectors. It
will not be detailed here because of space limitations,
but the quality of the results obtained is very similar
to that of figure 3, and the computation time is only a
linear function of the number of pixels N& |{14].

IV ~ SPECKLE REDUCTION TECHNIQUES FOR COMPLEX AMPLITUDE
SPECKLE IMAGE

In section III, we discussed various speckle re-
duction techniques for intensity speckle images where
only the speckle intensity is recorded and the phase
information is lost through the recording process. The
phase information is usually lost for laser speckle and
for synthetic aperture radar (SAR) images that are pro-
cessed with a coherent optical system. The MAP speckle
reduction filter for the correlated speckle samples in
this case was shown to be analytically difficult to de-
rive and implement,

In digitally processed SAR images and in sonar i-
mages both the amplitude and phase of the speckle image
are preserved. It will be shown in this section that
with the extra phase information in the complex ampli-
tude correlated speckle image, the optimal nonlinear
MAP filter can be derived easily compared with the in-
tensity speckle case and speckle reduction can be im-
proved.

Using equations (1) and (2) and the complex gaus-
sian character of the fully developped speckle ampli-
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tude b(m,n), the MAP estimate of the squared moduius
fz(m,n) given the noisy observation b(m,n) and our ima-
ge model can be derived. If we use the lexicographic
notation, the MAP equation for point i = (m-1) N + n,
m=1toN, n=1to N can be written in the following

form |13] > 7
T -1 T -1 1 -5
- - = * - - =
D3 G by # By G DTG by - ——=0 (12)
2
f

In this equation, h. is the i th column of the im-
pulse response matrix ; T denotes transposition ;

%z and 02, are the mean and variance of our nonstatio-
nary meag, nonstationary varaince image model ; and

C, is the conditional covariance matrix of the speckle
amplitude b given modulus f. Equation (12) is gn qua—
tion with unknown f2, i.e. 5he N2 components f¢ =
(m,n) of the colum vector f<. Let us note that'if the
last term of (12) is omitted, i.e. the object variance
is assumed very large, the remaining terms constitute

the ML equation for the same problem. The N2 equations
(12) for all values of i form a system with NZ unknowrs

f.. These equations can be solved, in principle, using
i{erative methods such as the Newton-Raphson or Picard
method. However, in each iteration, we must nu@ericg]]y
invert fhe matrix C (f), which has dimension N¢ x N
where N°is the numbér of pixels. Even though we can
use sectioning techniques to reduce the dimensionality
of C, (f), the procedure is still very computationally
demaRding. We also need to find the optimal direction
for updating the estimate in each iteration. This ap-
proach is still impractical even with fast computers.

It is nevertheless possible to solve the equations
(12) at least to a good approximation, using the follo-
wing approach.

Instead of estimating f? from b, we can estimate
in a first step the complex modulus f exp i ¢ from b

This is an image restoration problem on complex
amplitude data.

The LLMMSE estimate of f exE i ¢ can be expressed
by an equation analogous to equation (11) and our re-
cursive method for approximately solving the LLMMSE
equation can be used on that equation as well as on
the intensity data considered in section III. This
yields a complex estimate for f exp i ¢; let us call
2 the modulus squared of this estimate. Let us point
out that the LLMMSE filter uses our image model and
therefore requireg a first knowledge of the local mean
and variance of f<. Now, we can use the intermediate
estimate f§ to solve the MAP equation (12). For that
purpose, we also need the covariance matrix Co of the
complex LLMMSE error

e=fexpig - LLMMSE estimate of f exp i ¢ (13)

C, = ensemble mean of (e e¥) (14)
A calculation which will not be reproduced here
allows one to reformulate the MAP equations (12) using
only the intermediate estimate fg and the error cova-

riance matrix Ce: -

Co (1a1) + 2 1 (F5 - £2)
L IR Ly (15)
- 2.2 2 - 2,
(F9) f ok

In this equation, C_(i,1) is the ith diagonal ele-
ment of matrix C_. Equa%ion (15) has exactly the same
form as (10) ; it reduces to a scalar equation with
one unknown f%; the speckle,_intensity g is replaced
by the quanti%y Ce(i,i) + f¢. derived from the complex
LLMMSE estimation®and the iRloherent image intensity
I is replaced by the squared modulus f2 of the object
itself.

It is therefore helpful to view the function of
the LLMMSE filter operating on the complex amplitude
speckle observations as decorrelating the data. The
outputs of the LLMMSE filter are combined to form an
intensity image and processed by a one-point MAP filter
that is derived by assuming that the speckle intensity
samples are statistically independent. With this in
mind, a simple jterative algorithm is developed. In
each iteration, we apply a nonstationary 2-D recursive
filter on the complex amplitude speckle image. The fil-
tered estimate and the diagonal element of the filtered
covariance matrix are combined to form a new intensity
speckle image. The one-point MAP filter is then applied
to this new intensity speckle image and we have a MAP
estimate of the original object intensity. This new es-
timate is used as the local variance of the 2-D recur-
sive filter and starts the next iteration. The block
diagram of this algorithm is illustrated in figure 4.
The one-point MAP

local mean
and variance

nonstationary _ .
E__,recursive fo I lz Oﬂaﬂgoint ;.
filter . £ilter >
filtered variance
filter parameters — local variance

Figure 4. Block diagram of MAP estimation
for complex amplitude speckle.

estimate is the real solution of a cubic equation whose
value is between the local estimate and the speckle in-
tensity, and this prevents the possibility of divergen-
ce in the iteration.

Figure 5 presents some simulation results. The o-
riginal imageis the same as in figures 2a and 3a. The

* #

) T
Figure 5 : Speckie reduction, simulation results :
correlated complex amplitude data, same example as
figures 3a and 3b ; a) processed MAP image, first ite-
ration ; b) second iteration.

speckle intensity is that of figure 3b, but this time
phase information is preserved. The first iteration
MAP estimate is shown in figure 5a and the seconde es-
timate in figure 5b. Some improvement with respect to
figure 3 can be observed.

V - MULTIPLE FRAMES CASE

Up to now, only single speckle images have been
considered. It is quite usual to superimpose the inten-
sities of several independent speckie images wherever
possible, for example in SAR imagery. This produces a
first speckle reduction effect although phase infor-
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mation is Tost. A1l the techniques discussed in sec-
tion III can be applied to such "multiple frames"
speckle images to further reduce speckle noise. The
only basic difference is that the p.d.f. of speckie
intensity is modified and the appropriate statistics
must be used. The simultation results are encouraging
|13}. Space restrictions do not allow to show them he-
re.

VI - CONCLUDING REMARKS

In this work, we attempted to take advantage of the
exact statistics of fully developed speckle noise to
develop suitable speckle reduction techniques. In the
framework of a nonstationary mean, nonstationary va-
riance image model, a one point MAP filter for inten-
sity speckle data was first derived. A useful refine-
ment is to take advantage of the known correlation
properties of speckle noise to further reduce it. Fi-
nally, a speckle reudction technique involving speckle
correlation prperties and operating on complex speckle
data has been developed. Further work is still needed
to simplify if possible these algorithms, to assess
quantitatively the improvenent obtained by our methods
and to attack the case of non-fully developed speckle.
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Figure 3 : Speckle reduction, simulation results :
correlated intensity data.

a) Original (same as 2a) ; b) Speckle image with
samplingas 2b but bandpass 5 times smaller ;

¢} 7x7 local mean of b ; d) Local linear minimum mean
square error estimate.
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