PREMIER COLLOQUE IMAGE

461 Zi;;;//

Traitement, Synthése, Technologie et Applications

BIARRITZ — Mai 1984 —
e

ALGORITHMES ET ARCHITECTURE POUR LE TRAITEMENT D'IMAGES

ALGORITHMS AND ARCHITECTURE FOR IMAGE PROCESSING

Per-Erik Danielsson

Linkgping University, Department of Electrical Engineering, $-581 83 Linkdping, Sweden

RESUME

Cet article contient quatre chapitres plus ou moins
1ié8s les uns aux autres. Dans le premier chapitre,
Traitant du probléme descendant, nous examinons le
probTeme general de construction du systéme de traite-
ment d'image. L'approche descendante est la méthode
idéale qui part de 1'application pur aboutir via des
algorithmes, & 1'architecture et & 1'installation
finale. Nous tirons la conclusion qu‘une construciton
réelle doit 8tre un mélange de procédures descendantes
et ascentandes qui forment des boucles de vérification
itératives.

Dans le deuxiéme chapitre, L'approche SIMD, nous exa-
minons un nombre d'algorithmés/operations et les prob-
1émes qui en découlent pour le traitement SIMD. Bien
que trés peu utilisée dans le systéme SIMD actuel, Ta
topographie distribuée image-au-processeur n'en reste
pas moins trés importante tout particuliérement pur
les opérations environnantes.

Dans Te troisiéme chapitre, L'architecture plan focal,
nous soutenons qu'une technologie future intégra ou du
moins rapprochera le senseur matriciel et le proces-
seur {ou le processeur matriciel). Une proposition
d'une telle intégration est présentée. A 1'aide d'un
nouveau type de conversion A/D on peut optimiser le
contrdle de rétroaction des niveaux Tes plus élevés
aux plus bas pour des &vénements dans un environnement

dynamique tel qu'il se produit lors de la vision
robot.

Dans Te chapitre 4, Volumes 3D. Un défi futur, nous
faisons observer que CNNEES peuvent, par
exemple, étre produites par tomographie, NMR et micro-
scopie. D&jd la présentation de ces volumes de densité
est un probléme & solutions multiples. IT est vrai
qu'un tel mode de présentation interactive exige des
calculs extrémement avancés et lance un défi aux
architectes d'ordinateurs.

SUMMARY

This paper contains four relatively loosely connected
sections. In section 1, The top-down problem, we scru-
tinize the general design problem for image processing
system. The top-down approach is the ideal design
method which goes from application over algorithms to
architecture and final implementaticon. It is concluded
that a real design has to be a mixture of top-down and

?ottom-up procedures forming iterative verification
0ops.

In section 2, The SIMD-approach, we are discussing a
number of algorithms/operations and the problems they
rise for SIMD-processing. Although not used frequently
by present SIMD-systems the so called distributed
image-to-processor mapping is an important feature,
especially for neighborhood operations.

In section 3, Focal plane architecture, we advocate
that a viable Tuture technoTogy will integrate or at
least bring closer together the sensor array and the
processor (or processor array) A proposal for such an
intergration is given. With a new form of A/D-conver-
sion, the feed-back contrel from higher to lower
levels can be optimized for events in a dynamic envi-
ronment as encountered in robot vision.

In section 4, 3D-volumes. A future challenge, we are
bringing attention to the 3D-data that can be produced
by, e.g. tomography, NMR and microscopy. The mere
presentation of these. density volumes is a problem
with many possible solutions. Truly interactive pre-
sentation modes are extremely computation demanding
and a new challenge to computer architects.

462

ALGORITHMES ET ARCHITECTURE POUR LE TRAITEMENT D'IMAGES

ALGORITHMS AND ARCHITECTURES FOR IMAGE PROCESSING

Per-Erik Danielsson

1. The top-down problem

Ever so often a new architecture for image processing
is presented. In many cases the originator has redis-
covered a wheel which is called either pipe-lining or
parallelism. The wheels are used to steer away from
the von Neumann computer model but the end product is
normally far from impressive, sometimes disastrous.

A common reason is that application requirements have
been only partly foreseen and analyzed. Therefore,
algorithms and data transfers for which the architec-
ture is il11-tuned fi1l up new bottlenecks instead of
the classical one attributed to von Neumann.

Ideally, all designs should be top-down. For image
processing systems the top-down design approach is
illustrated by Figure 1.

Firstly, a set of applications is selected. In a truly
general purpose case all application areas of Figure 1

and a few more should be included. A more specialized
machine may be targeted to only one of the areas or to
one very specific application within one of these
areas. In the latter case the obvious solution is a
pipe-Tined system where each processing step from
input to output is tuned to the required speed. How-
ever, the present discusison does not concern such
dedicated machines but general purpose image proces-
sing systems.

Secondly, from the application level we identify algo-
rithms and operations that are to be executed, their
relative frequency, the size of the operands (images)
etc. Remote sensing requires resampling and geometry
correction, automatic inspection may be dominated by
logic filtering on binary images, radiology by convo-
lutions or fast fourier transforms etc.

Thirdly, we look for an architecture that fills our
needs. At this step, however, the strict top-down
approach seems to fail. The wanted architecture does
not fall out as a ripe fruit of the analysis on the
algorithm Tevel. Instead, one has to first assume an
architecture, preferably with a couple of alternatives
in mind, and evaluate their performances for the job
mix presented from above. From this evaluation the
computer architect hopefully get some new ideas. The
architecture is then subjected to reductions or aug-
mentations (extra buffer memories, parallel proces-
sors, extended data paths etc) and a new evaluation
takes place. So in reality we have a chicken-and-egg

situation. A hunch is used for a start and refined
over a sequence of generations.

Fourthly, the upward verification loops from architec-
ture to algorithms must be supported by downward loops
to the implementation level. Power consumption must be
reasonable, certain parts are intended for VLSI-

design, programming should be convenient at all levels

(including microprograms}), a suitable host should be

choosen etc. All these things boil down to a perfor-
mance/cost ratio of the suggested architecture. If
things seem unreasonable somewhere at the implementa-
tion level the architecture has to be changed which in
turn requires new upward verification loops, sometimes
all the way up to the application level.

Thus, the pure top-down design is a myth. In reality
all good designs are a mixture of top-down and bottom-
up procedures. Nevertheless, it seems that too many
designs 1in the image processing arena have been domi-
nated by the bottom-up approach. The advent of power-
ful processor and memory chips and also the possibili-
ty of custom design VLSI are strong bottom-up directed
forces. Verifications at the algorithm and application
levels of these designs have often been sketchy or
Teft to a dissapointed end user.

Why is pure top-down design so hard, virtually impos-
sible ? Probably, because we need our own vision and
the imaginative right brain in any creative process.
Verbal descriptions of a set of applications, algo-
rithms and programs are all sequential one-dimensional
procedures that we can understand partially (at best)
with our logical Teft brain. We don't see the totality
of a general purpose system at this level. For this we
need two-dimensional drawings where we can follow the
data-paths and the flow of parallel activities, refine
the details of a critical black box in block diagram,
get an overview of physical complexity and cost etc.
These drawings are the architecture and the key to all

good designs.

As described above the interplay between algorithms
and architecture is necessary and double-directed. It
js even more so since an architecture is not only a
tool for implementing algorithms but also a powerful
stimulus for inventing new algorithms. In fact, no
algorithm is possible to define unless a basic repe-
toire of operations are presumed, i.e. some basic
hardware is already implied.

ALGORITHMES ET ARCHITECTURE POUR LE TRAITEMENT D'IMAGES

ALGORITHMS AND ARCHITECTURES FOR IMAGE PROCESSING

Per-Erik Danielsson

s s Automatic Robot Remote
Applications inspection % sensing
Algor1thms
Operat1ons

Histo- Con-
gramming volution

Radiology *

operations/\algorithms

Feature
extraction

Figure 1

2. The SIMD-approach

There are no consensus on a viable 1ist of algorithms-
/operations for image processing. The one given in
Table 1 has been compiled so that we could discuss the
following aspects of architecture.
i} Possibility for SIMD-processing and control.
ii) Requirements on memory/processor intercon-
nection.

Input/Output of images

Neighborhood operations (parallel)

Propagation (recursive neighborhood operations)
Feature extraction (counts, event coordinates)
Table Took-up

FFT-type operations

Geometry operations (resampling, geom. corr.)
Data-dependent traversal (e.g. border tracing)
Data-dependent neighborhood operations

Table 1 1Image processing operations

Some lines in Table 1 harbour a vast number of algo-
rithms, e.g. neighborhood operations that include
things 1ike convolution, median filtering, logic ope-
rations (THIN, EXPAND, etc) and relaxation. Others are
a more direct operational feature like table Took-up
which is useful in many different circumstances.

The Single Instruction Multiple Datastream mode of
parallel activity comes natural to image processing
since the operands (the images) are huge and much of
the execution seems to be uniform and data-indepen-
dent. Consequently many attempts have been made in the
past beginning with ILLIAC III [1] and IV [2] followed
by CLIP [3], DAP [4] and MPP [5]. Lately, the GRID-
computer of General Electric Company, England [6] and
the 3D-machine of Hughes [7] have been presented to a
a larger audience. Most of these (and many other
attempts not mentioned here) are what could be called
heavily parallel in the sense that they contain a
large number of simple bit-serial processors. Actual-
ly, several other non-bit-serial processors like GOP
(8] and PICAP II/FIP [9] are also SIMD-machines in

464

ALGORITHMES ET ARCHITECTURE POUR LE TRAITEMENT D*IMAGES

ALGORITHMS AND ARCHITECTURES FOR IMAGE PROCESSING

per—Erik Danielgson

SfroceSSorS

\

/mage 177 MEMOI1ES

VZ

-

N
\\\ &
\\\

\, ~ R

/7
ABCOABCIOABCO
EFGHIEFGH|EFGH
1SR SKL KL
o PN O PN O L

ABCO

EF

Figure 2 a)

some respect but for the sake of brevity we will rest-
rict our discussion to the bit-serial ones. In a brief
sequence we will comment on their adaptibility and
fitness to the list of algorithms/operations in

Table 1.

As have been emphasized elsewhere [10], [11] the
image-to-memory mapping is a fundamental characteris-
tic for these machines. The two versions are shown by
Figure 2a) and b) and in both cases we make the reali-
stic assumption that the image is larger in terms of
pixels than the processor array in terms of proces-

sors.

In 2a) the m x m processors are operating on neighbo-
ring pixels forming an “activity window" or “"patch"
over the iamge. The window activity is made possible
by storing every n:th pixel in a processor/memory
module.

In Figure 2b) the processor activity is distributed
over the image, each processor dealing with a subimage
of its own. The distributed activity is achieved by
storing each subimage in a memory module of its own.

Of the machines mentioned above, CLIP, MPP, Hughes 3D,
GOP and PICAP II/FIP are all using the patched image-
to-memory mapping, while DAP and GRID are using dist-
ributed processing according to Figure 2b). However,
only GRID is fully supporting this mapping with a
properly designed control and address sequence for
image processing.

Frocessors

N

?@f @f@?ﬁ

@@Fﬂ

ﬂ%ﬁa 7, ﬁ@f

///g/g//

ﬂﬁ7ﬁwye

¢z

AAABDD
AAABBE
AAAILBE

FPP

I

Vi

Figure 2 b)

Input/output of images is often a problem in these
machines. MPP is using a large staging memory for this
purpose and for conversion between raster-scanned
images of arbitrary size outside the system and the
128x128 patches that can be handled by the array. It
is sometimes claimed that the distributed mapping is
more difficult to handle for input/output operations,
the reason being that a fast rasterscan input data
stream has to be matched in bandwidth by each memory/-
processor module. However, as shown in [6], [11], [12]
there are several solutions that utilizes either extra
buffer hardware that reformats each line or fast algo-
rithms that transposes the image after its arrival
into the array.

Neighborhood processing is of prime importance for

image processing. In this case the distributed mapping
is vastly superior. With nearest neighbor connections
large neighborhoods are imediately accessible around
every point in the image. In contrast, the patched
jmage-to-memory mapping requires shifts of input data
to reach larger neighborhoods. Even worse, the addres-
sing of the individual wemory modules are not uniform
when neighborhoods overlap from one patch to another.

Propagation was considered already in ILLIAC III and

is a special feature in CLIP. However, propagation,
Jike all recursive operations is inherently not fully
effective when performed by a SIMD-system. The opera-
tion takes place as a wavefront of state changing

465 Zi;;;k/

ALGORITHMES ET ARCHITECTURE POUR LE TRAITEMENT D'IMAGES

ALGORITHMS AND ARCHITECTURES FOR IMAGE PROCESSING

Per-Erik Daniels$son

L P s s = e

pixels. Consequently, in a certain moment only a one-
dimensional subset of the two-dimensional array of
processors are active and the efficiency of amx m
array is only a fraction of its efficiency for a
parallel operation. A single processor, on the other
hand, can work with full efficiency since its activity
carries the propagation wave.

The special propagation features of ILLIAC III and
CLIP IV consist of combinatorial ‘signal paths that are
opened depending on neighborhood states. Thus, a wave-
front can move faster than the normal "speed of light"
which is one pixel unit distance per clock period.
Still, the efficiency is lower than for parallel ope-
rations. Also, only very primitive recursive opera-
tions can be set up in this way.

Feature extraction is either of type counts (number of
pixels in a certain state) or event coordinates. The

ming which means that if a machine has a good histo-
gramming mechanism it has also solved most of the
feature extraction problem. CLIP IV has an AWQ-circuit
(A11 Ones Count) that counts all 96 bit in a column of
the image shifted out over the edge of the array.
Thus, counts of binary states are quickly collected.

Histograms can be obtained by first decoding each
pixel, say, from 8 bit to one of 256 and then do the
AWQ-operation. It is not necessary to produce the
whole set of 256 decoded binary image planes. Various
schemes of decoding in steps may improve the efficacy.
Nevertheless, it is obvious that with an m x m array
and b-bit per pixel the minimum number of cycles for a
histogram over the m x m area is 2 -m. If we adopt the
numbers from MPP (128x128 array, 10 MHz) we get fol-
Jowing minimum operation times, exclusive the decoding
operation. (KC = kilocycles)

8 bit 512x512 256x128x16 = 512 KC = 51.2 ms
So, even if MPP should be equipped with a feature
extract mechanism 3 la DAP, the histogramming is not
faster than what could be achieved with a single mode-
rately fast RAM-table.

Event coordinates are the Tocation of special points

in the image (corners, point of gravity etc). These
points are first labeled by various preprocessing and
filtering steps and are finally "found" by delivering
their coordinates to the high level part of the sys-
tem. In a SIMD-system the search for the points is a

parallel activity but the collection of the coordina-
tes is a sequential procedure. For good efficiency
this last step requires an interrupt facility by which
the processors make individual calls to the master
control. Since events are distributed over the image
rather than lumped together in a small window it seems
plausible that the distributed image-to-memory maping
is advantageous in this respect.

Just as in any other kinds of data processing, table

look-up has become extremely common in image proces-

sing as a result of the ever decreasing cost of memo-
ry. Examples of table look-up in image processing are
the following.

Arbitrary grayscale mapping

Boolean function on a 3 x 3 binary neighborhood
Histogram functions

MuItiﬁly with a constant

The implementation requires an index register in each
PE. The global address is a pointer to the beginning
of the tables and the individual offset values in the
index registers are added to the global address. This
operation may seem to require a major extension of the
PE-hardware. However, if index arithmetic will be used
for table Took-up only, we can spare the adder comple-
tely. See Figure 3.

Globo/
odoress
&‘V‘ \
oM
& |
474 L
77PX —
XF £
\\ 5
Feset st
Figure 3

For simplicity assume a 16 bit memory. Let all tables
occupy 2, 4, 8 or 16 bits and let a 2-bit table start
at XXX0, at 4-bit table start at XX00 etc. Then, we
can shift in the offset, MSB first, in XR and reach

the table entry by simple concatenation implemented as
wired-0OR.

Table look-up was one feature of ILLIAC IV. Quite
probably it is a necessary ingredient in any competi-
tive image parallel architecture.

466

ALGORITHMES ET ARCHITECTURE POUR LE TRAITEMENT D'IMAGES

ALGORTTHMS AND ARCHITECTURES FOR IMAGE PROCESSING Lo, p.i\ panielsson

lllIIIIIIIIIlIIIIllllIllllllllIIIllllIIIIIIIlllIIIlIlIlIlIlIIlllllllIlIlIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIII

FFT-type operations are used frequently in areas like
imaging and image coding, less frequently in image
analysis. The butterfly computations can be processed
in SIMD-mode but in this case only the distributed

image-to-memory mapping seems viable. The number of
butterfly levels for an n x n image is logzn. With an
m x m array the subimage size is n/m x n/m. Conse-
quently the first 1ogzn/m butterfiies can be performed
with data in place. To continue with the following
Tevels data has to be transposed. As shown in [11]
this operation is identical to the data shuffle that
converts raster-scanned input data to the distributed
image-to-memory mapping. See Figure 4 that illustrates
the one-dimensional case n=16, m=4.

0 4 812 1 5 913 2 610 14 3 71115
Trans- U posal
01 2 3 4 5 6 7 8 91011 12 13 14 15
Figure 4

Geometry operations are difficult to perform in a

SIMD-array. Individual data-dependent addressing for
the processing units is hard to avoid and even then
some cases like rotation are extremely complicated.
For the sake of brevity we have to leave these matters
without further analysis.

Data-dependent traversal is wanted, e.g. to perform

chain-coding which implies a sequential contour follo-
wing. In this type of operations it is almost inheren-
tly impossible to utilize a SIMD-system with good
efficiency. However, one may imagine cases where the
decision to move in a certain direction is a more
complicated one that involves a search over a larger
neighborhood. If the search area is of size m x m
(approximately) a window type image-to-memory mapping
as in Figure 2a) might be useful.

Finally, data-dependent neighborhood operations are
allowed in a restricted sense in a SIMD-machine. All

such designs should include a so called activity regi-
ster (one or several bits) which can be used as a
condition to some operations. If set, the operation is
executed, else no operation. This limited form of data
dependency means that a processor can SKIP but not
JUMP. A1l processors still work in lock-step. Real
branches and program-loops are performed by the common
control unit.

This is remarkably different from the freedom in exe-
cution in a single processor system. There, the prog-
rammer allows himself to use all kind of time-saving
smartness, such as a quick decision to go to next the
neighborhood if the image is flat and void of informa-
tion and throw in the more complex algorithms only
when the situation so requires. Such smartness is
excluded in the SIMD-machine. A1l processors are tied
together, doing useful work or acting like dummies.

In summary, a SIMD-system can be used for the six
first operation types in Table 1 provided distributed
image-to-memory mapping is employed. Table look-up is
a considerable complication that requires individual
index addressing. Some type of geometry operations may
be feasible while data-dependent traversal and truly
data-dependent operations are excluded, almost by
definition.

3. Focal plane architectures

A predictable trend in future image processing system
design is a desire to bring sensors closer to the
processors, possibly obtaining a full integration of a
two-dimensional photo-sensitive array with an SIMD-
array of processors. Such architectures have been
coined Focal Plane Architecture. A rudimentary version
has been suggested for the LAP (Linear Array Proces-
sor) [13] and is carried further in the scheme illust-
rated by Figure 5.

A CCD-array of, say, 256 x 256 photosensitive elements
is tapped serial/paraliel-wise over the edge of the
array, using time-discrete analog shifting. Each ana-
log output feeds two comparators, controlled by the
content A and B in two registers, B < A. The idea is
to produce an amplitude window that determines the
binary outputs of the two comparators. Obviously a
four-bit A/D-conversion could be performed as follows.
First we determine if the input is above 8, using

A = max, B = 8. This gives us the most significant bit

for all 256 outputs in parallel. Then we use A = 8,
B =4 and next A = 12, B = 8 and deliver an output =1

in any of these events. This constitutes the next most
significant bit, etc.

The number of "window-states" for A, B is 2b-1 for
b-bit normally coded outputs. This number could be
almost haifed to Zb'1 by employing Gray~codéd outputs.
The reason is that in each bit position the Gray-coded
binary table has half as many windows of subsequent
1:s as the normally coded table. Furthermore, the

4?37 Zé:;:;;//

ALGORITHMES ET ARCHITECTURE POUR LE TRAITEMENT D'IMAGES

ALGORITHMS AND ARCHITECTURES FOR IMAGE PROCESSING

R

FO N0 N

A S

Il feature extroct

I

I~

I

Figure 5

Per-Erik Danielsson

756 x 256
Serrs50r arrd

sHIFE array

Rl
A e
% ’4>\A .
Ao\ /5 | S 756 dowble
§%>f {'E ¥ 7!; V2 WV, compara fors
| | [
Strobe k) AND - gotes
Rosel [LL‘ lrhj l Lalches
; ‘ h J
L_{J I_‘_I l_‘j Butter
J{ Z25
l Z 4\—\ Lol MUX / Multrplexers
64
faniniin il %—f—‘—_————:—‘ﬁmjo/‘ yp limt
|
l
|l
l
|/ emory -——-
}lAddffjj -- = 5/MD
I‘ | ' ! Hemoary ~/Tocessor
‘I/Dfa essor | : | arroy with
G ontro/ 1| : ShIFErr capoctty
] | !

468

ALGORITHMES ET ARCHITECTURE POUR LE TRAITEMENT D'IMAGES

ALGORITHMS AND ARCHITECTURES FOR IMAGE PROCESSING

Per-Erik Danielsson

Gray-code is necessary to avoid large errors in border
cases like 7-8, 15-16, 31-32 etc. Following table
illustrates the sequence for a four-bit Analog-to-
Gray-code conversion.

time 1 2 3 4 5 6 7 8
A max | 12 6 |14 3 7 {11 }15
B 8 4 2 {10 1 5 9 113
bit out 0 1 2 3

Each digitized bit can be fed to the SIMD-array which
we assume to be of, say, size 64 x 64. Of course,
nothing would prevent us from using a linearly orga-
nized processor array of size 256 x 1. However, the
degree of parallelism will then be 1imited to 256
instead of 4096. Also, the direct accessible neighbor-
hoods over nearest neighbor interconnections would be
Timited to 3 x 256 instead of 9 x 9 in the 64 x 64
processor with_distributed image to processor map-

ping.

Assume that the comparators can be controlled and
strobed with 5 MHz and that the data rate at the array

input is 64 bit each 100 ns. Thus the maximum bit-rate
from the sensor is

1280 Mbit/s for bit O
1280 Mbit/s for bit 1
640 Mbit/s for bit 2
320 Mbit/s for bit 3
etc

(= MSB)

while the array accepts a maximum of 640 Mbit/s. For a
256 x 256 x b bit image this gives us the following
conversion and input times.

b 1 2 3 4 5 6
time
inms 0. 0.2 03 05 0.9 1.7

The importance of these numbers is that they show how
the system can utilize a trade-off between fast input
and photometric precision. In fact, in the traditional
computation scheme, Figure 6, the feed-back Tloop that
controls the input and Tow-level stages can be made
much more active and versatile all the way back to the
sensors and A/D-conversion.

For instance, it is very often useful to make a "quick
Took" at the scene. A crude decision about the image
may require only a few bit per pixel for which the
conversion and input times are extremely short.
Furthermore, since the sensors are time-integrating
devices their speed/photometric precision ratio match
these system capacities perfectly.

The A/D-conversion of Figure 5 has another form of
adaptivity which is enbodied in the arbitrary setting
of the A- and B-values. Thus, the analog signal range
can be transformed into any possible digital domain,
e.g. logarithmic mapping or utilizing only a part of
the range for the digital representation.

As a summary, focal plane architecture may open the
door to new applications of image processing especial-
ly in robot vision. Large gains in speed and perfor-
mance/cost ratio could be achieved by utilizing intel-
1igent feed-back control of all low-level stages.

S/M0 —/aroceﬁ/'ﬂg

AN,

Sersor
/Ir/‘ay

A/D

Conrversion

Frltering

1t leve/

| Feature _
processing

extraoct

Cornrtro/ Y

Keswlt

Figure 6

469 L\/

ALGORITHMES ET ARCHITECTURE POUR LE TRAITEMENT D'IMAGES

ALGORITHMS AND ARCHITECTURES FOR IMAGE PROCESSING

Per-Erik Danielsson

lIIIIIIlllllIIIIIIIIIIlllllIIIIIIIlIllIllIllIIIIIlIlllIIlIllllIIlllllIIIIllIlIllIIIIIIIIIIIIIIIIIIIIIIIII

4, 3D-volumes. A new challenge

Several new imaging methods (X-ray tomography, Nuclear
Magnetic Resonance NMR, Uitra sound etc) are able to
produce 3D-data in the form of an "intensity" or "den-
sity" value for each point in a given volume of space.
Such a signal value is called voxel in analogy with
pixel for 2D-images. With a permissible generalization
we call this voxel space a 3D-image.

It should immediately be observed that a 3D-image of
this kind is totally different from the 2D-projections
of the 3D-world we usually perceive through our eyes.
In the latter case the intensity values correspond to
i1luminated surfaces of solid objects in a world fil-
led with transparent voxels (usually air) and opaque
voxels (the objects). In contrast, the 3D-images we
are interested in here correspond to a semitransparent
world. When looked upon, their structures may obscure
each other in a much more complicated way than the
simple hidden surface situation in traditional 3D-
graphics.

Previous attempts [14], to present this world to the
human observer have mainly strived to transform the
true 3D-image into a “normal" 2D-projection of a 3D-
scene by performing the following operations.

- Segmenting the 3D-image into objects and back-
ground by thresholding.

- In the resulting binary 3D-image the outer
surfaces of the border voxels are "coated" in
a procedure that correspond to contour-follo-
wing in a binary 2D-image.

- A 2D-projection is computed and displayed.

In an ongoing project at our department we are trying
to explore other methods to make this 3D-world visible
and possible to perceive. Our present results show
that there are a multitude of useful presentations
depending on application and different types of a
priori knowledge of the data. In fact, the ideal
situation is that the operator interactively can
select what suits him best, change from one presenta-
tion mode to another, have the possibility to cut and
point into the volume at free will.

Figure 7 a, b, ¢, d, e, f are pictures from our expe-
riment with an X-ray tomographic volume obtained from
a pig head as 128 slices of 256 x 256 voxels. Inter-

polation results in a full 256 x 256 x 256 = 16 Mvoxel
volume. Figure 7a) and b) are two neighboring slices
that happen to pass through the eye-lenses of the pig.
Figure 7 c) is a Took-through projection. It is obtai-
ned by traversing the volume with 256 x 256 projec-
tion/computing rays and accumulating the density value
along each ray. Each pixel in the projection is given
the negative exponential of the accumulated sum. Con-
sequently, the result looks 1like an ordinary X-ray.
However, during the accumulation we are neglecting all
voxels below a certain threshold which means that only
the bone structure shows up in the picture.

Projections are taken from a number of directions with
an angular difference of, say, 2°. By displaying these
in sequence at a suitable rate the skull of the pig is
rotated in front of our eyes. Furthermore, by simul-
tanous display of projections having, say, 8° diffe-
rence, we obtain a stereopair. Thus we can have both
stereo and rotation. We consider this mode of display
as the basic feature in 3D-berception.

Figure 7 d) is what we call a depth-coded projection.
Now, the result of the projection rays traversing the
volume (from an arbitrary direction) is not the accu-
mulated density but the depth at which the ray hits
the first bone voxel. The corresponding pixel is given

an intensity proportional to the inverse of this depth
value.

Figure 7 e) is similar to 7 d) exept that the intensi-
ty is largely determined by the gradient of the depth-
coded image. Figure 7 f), finally shows the same kind

of display as- 7 e) except that all voxels closest to
the viewer is disregarded during the projection.

Obviously this is equivalent to cutting the structure
at certain depth and Jetting the observer see the
inside of the skull. It should be emphasized that all
these later display modes are possible to use with
stereo and rotation just like Figure 7c).

At the present stage of the project we are completely
relying on precomputed projections. Then, the fast
digital video disk in PICAP II [15] allow us to dis-
play these projections dynamically on demand. However,
we are convinced that the possible modes of presenta-
tions for many applications are so many that for true
interaction one cannot rely on precomputed projec-
tions. Instead, one has to have an image processing
system that is fast enough to do the computation on
demand.

470

ALGORITHMES ET ARCHITECTURE POUR LE TRAITEMENT D'IMAGES

ALGORITHMS AND ARCHITECTURES FOR IMAGE PROCESSING

Pex-Erik Danielsson

Figure 7 a)

Fi 7 d
Figure 7 ¢) gure)

Figure 7 e}

Figure 7 f)

471 Z:;;;//

ALGORITHMES ET ARCHITECTURE PQUR LE TRAITEMENT D'IMAGES

ALGORITHMS AND ARCHITECTURES FOR IMAGE PROCESSING

Per-Erik Danielsson

To handle a 256 x 256 x 256 volume in this manner we
envision a system with 128 Mbyte memory in fast RAM
and computation rates exemplified below.

- Approximate gradient by using a

2 X 2 X 2 Robert Cross 500 ms
- 3D-shrink/expand, per step 16 ms
- One look-through projection with

nearest neighbor interpolation 50 ms
- "90%°-transposal” in 3D or higher

dimensional space 200 ms

These numbers exceed the capacity of image processing
systems available today with factor of 10 or 100.

We conclude this section by presenting in Figure 8 a
stereopair of 1ook-thfough projections from a neuron.
The original data are obtained from the PHOIBOS micro-
scope at Department of Physics, Royal Institute of
Technology [16] which are then processed for 3D-pre-
sentation at our departmentl Note how the dendrites
are more or less in a plane together with the nucleus.
The axon leaves the nucleus almost perpendicular to
this plane. Figure 8 indicates that T1ight microscopy
might be the largest application area for 3D-image
processing and presentation.

Figure 8

5. Acknowledgement

The 3D-images in this paper have been produced by Mr.
Reiner Lenz on the PICAP II-system at the EE depart-
ment of Linkdping University. The support from Swedish
Board of Technical Development is gratefully acknow-
ledged.

References

[1] B.H. McCormick, "The I11inois Pattern Recognition
Computer - ILLIAC III", IEEE Trans. Computers,
Vol EC-12, pp 791-813 {1963).

[2] R.M. Hord, "The ILLIAC IV. The First Supercompu-
ter", Computer Science Press, Rockville, MD
(1982).

[3] M.J.B. Duff, "Parallel Processors for Digital

Image Processing” in "Advances in Digital Image
Processing”, P. Stucki (ed.), Plenum Press, New
York, (1979).

(4] P.M. Flanders, D.J. Hunt, S.F. Reddaway, D. Par-

kinson, "Efficient High Speed Computing with the
Distributed Array Processor", in "High Speed
Computer and Algorithm organization", D.J. Kuck,
D.H. Lawrie, A.H. Samek (eds.), Academic Press,
New York (1977).

[5] K.E. Batcher, "Design of a Massively Parallel
Processor", IEEE Trans. Computers, Vol. C-29, pp
836-840, (1980).

472

ALGORITHMES ET ARCHITECTURE POUR LE TRAITEMENT D'IMAGES

ALGORITHMS AND ARCHITECTURES FOR IMAGE PROCESSING

Per~Erik Danielsson

(6]

(8]

[9]

[10]

(11]

D.K. Arvind, I.N. Robinson, I.N. Parker, "A VLSI
Chip for Real-Time Image Processing", Proc. 1983
Symposium on Circuits and Systems, Newport Beach,
CA, pp 405-408, IEEE (1983).

J. Grinberg, G.R. Nudd, R.D. Etchells, "A Cellu-
lar VLSI Architecture", Computer, Vol. 17, pp 69-
81, (January 1984).

G.H. Granlund, J. Arvidsson, H. Knutsson, "GOP, a
Paradiagm in Hierarchical Image Processing”,
Proc. ISMIII'82, pp 392-397, IEEE (1982).

D. Antonsson, B. Gudmundsson, T. Hedblom, B.
Kruse, A. Linge, P. Lord, T. Ohlsson, "PICAP - a
Systems Approach to Image Processing”, IEEE
Trans. Computers, Vol. C-31, pp 997-1000 (1982).

P.E. Danielsson, T.S. Ericsson, "LIPP - Proposals
for the Design of an Image Processor Array", in
“Computing Structures for Image Processing",
M.J.B. Duff (ed.), pp 157-178, Academic Press
(1983).

P.E. Danielsson, “"Algorithm-Driven Architecture
for Parallel Image Processing", in "Computer
Architectures for Spatially Distributed Data”,
Proc. of NATO Advanced Study Institute, H. Free-
man (ed.), North-Holland (1984).

[12]

[13]

[15]

(16]

P.E Danielsson, "An Input/Output Method for Pro-
cessor Arrays", Proc. Third Scandinavian Confe-
rence on Image Analysis, pp 412-417, Studentlit-
teratur, Lund, Sweden (1983).

R. Forchheimer, A. Odmark, "A Single Chip Linear
Array Picture Processor”, Proc. Third Scandina-
vian Conference in Image Analysis, pp 320-325,
Studentlitteratur, Lund, Sweden (1983).

G.T. Herman, “Three Dimensional Imaging from
Tomograms in Digital Image Processing in Medici-
ne" in "Digital Image Processing in Medicine",
K.H. Hohne (ed.), Springer (1981).

P.E. Danielsson, B. Kruse, B. Gudmundsson, "Memo-
ry Hierarchies in PICAP II", Proc. Workshop Pic-
ture Data Descr. and Management, pp 278-280, IEEE
(1980).

N. Astund, K. Carlsson, A. Liljeberg, L. Maj15f,
"PHOIBOS, a Microscope Scanner Designed for
Micro-fluorometric Applications, Using Laser
Induced Fluorescence", Proc. Third Scandinavian
Conference in Image Analysis, pp 338-343, Stu-
dentlitteratur, Lund, Sweden (1983).

