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RESUME SUMMARY

The use of Kalman-tyve filters for noise-degraded
image restoration has been largely motivated by the
possibility of on-~line vrocessing of two-dimensional
(2-D) data,*due to the recursive nature of such
filters. Fast implementation methods are generally
based on the assumption of image stationarity al-~
though most real images are in fact non-staticnary
in nature. As a result, Xalman filters tend to
reduce image contrast and smooth the edges and the
processed image may be visually inferior to the
noisy image, although the noise content is effect-
ively reduced. Adaptive techniques, while »roviding
better results, generally require too much comput-
ation for suitability in an on-line environment and
higher-order filters also demand excessive comput-
ation.

In this paper we consider first-order 2-~D Kalman
filters, both vector and scalar, in conjunction
with simple block~tyne edge detectors. The edge
detector output is added to the Xalman filter input
in such a way that the filter response near any
edges is boosted, while in relatively flat areas
the filter is unaffected. Thus with little addition-
al computational cost the subjective guality of
the processed image is improved, particularly when
the amount of noise in the edge weights is small.

All filter parameters are determined from small-
dimensional matrices, réquiring relatively little
storage and computation and allowing efficient
filter implementation. Results are presented for
vector and scalar filters based on both non-
symmetric half-plane and quarter-plane image models.
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I. INTRODUCTION

The reduction of observation noise in image data is
a problem which has received considerable attention
in recent vears. The filtering techniques considered
may be broadly classified as recursive or non-recur-
sive, of which recursive filters have the advantages
of requiring less storage and having greater poten-
tial for on-line processing. Because of its proven
utility in one-dimensional (1-D) applications, much
of the research has been devoted to extending linear
Kalman filtering concepts to 2-D.

For the efficient implementation of a 2-D Kalman
filter (KF), the image statistics are generally ass-
umed to be stationary, greatly simplifving the image
modeling nrocedure. However, most imacges are in fact
non-stationary [1] and are only partially described
by the second-order statistics on which the XF is
based. Consequently, such filters tend to smooth the
image, blurring edges and reducing contrast such that
the subjective quality is degraded. Ingle et al. [1]
have achieved better results by segmenting the image
into blocks and filtering each block independently
of the others. While allowing some adavptation to the
local image statistics, the segmentation is somewhat
arbitrary and smoothing of edges still occurs. Ear-
lier work by Nahi and Habibi [2] involves edge det-
ection techniques to separate the image into two
regions, object and background, and filtering each
region indenendently. Such a method becomes quite
complex for more general images in which many differ-
ent regions can be distinguished. Biemond and Ger-
brands [3] apoly edge information extracted from the
noisy image to the control input of a 1-D row-wise
scan-ordexred KF such that the filter responds more
quickly to the nresence of an edge. This method is
most useful for images having mostly vertical edges
and subjectively improved results have been achieved.
In this paper we follow the same approach in the 2-D
context, with a view towards improving the edge-
response of an arbitrary first-order 2-D KF. The
first-order restriction allows relatively fast and
possibly on-line implementation.

In part II we briefly consider the edge-detection
methods used, and in part III we opresent the edge-
improved filtering algorithms for both vector and
scalar filters. Results of processing are shown in
part 1V, followed by conclusions.

II. EDGE~DETECTION

For our edge-improvement scheme, we must first apply
a suitable edge-detector to the noisy image. We
define an edge as an abrupt change in average grey-
level and require that the detector be computation-
ally simple (i.e. low order) and insensitive to
noise. These considerations lead to block-type con-
volution operators [3], which have less resolution
but more noise suppression than other choices. The
size of the operator is chosen to be as small as
possible (depending on the observation noise level)
such that the edge picture noise content remains
within reasonable bounds. OQur image is processed from
left to right, column by column, and therefore we
consider operators oriented towards detection of
vertical edges, in particular the two operators [3]:

L [Frow . M—1 =1 +1 +1
E1= 3 -1 0 +1 , E2= 3 |—1 -1 +1 +1 (1)
-1 0 +1 -1 -1 +1 +1

The implementation of E, reguires v twice the com-
putation of E, but results in half the noise variance
and is therefore preferred in noisier situations.
This noise variance is from the difference between
the edge pictures obtained by applying the detector
to the noisy versus the original image. The noise
content is further reduced by thresholding.

In order to minimize the slight vertical spreading of
edge information caused by both detectors, we also
use a continuity criterion which requires that the
points vertically adjacent to a detected edge point
are also detected as an edge. If not, then the edge
weight of the point in question is set to zero. This
again reduces the noise variance, but edges of very
small vertical spread may become obscured. See Figs.
3 and 4 for edge-picture examples.

III. THE EDGE-IMPROVED FILTERS

We require first that the degraded image process be
expressed by the dynamical model [4]

s(k)=Fs(k-1) +Gu (k) . (2)
z (k) =Hs (k) +v (k) . (3)

s(k) is the signal state vector, u(k) the generating
white noise, v(k) the white Gaussian observation noise
and z(k) the observation vector. F, G and H are the
system matrices, depending on the image model and
filter type (scalar or vector). The optimal (MMSE)
estimate of s(k) given the set of observations

{z(3): 3=1,2,...,k} is found recursively from
800 =[T-x () E)FE (k-1) + K(K)z(k) (4)

and K(k) is determined from the coupled recursive

equations constituting the discrete Riccati equation
(e.g.[4],[5]). For a stable model, K(k) reaches a
steady state K independent of the initial conditions
5]. Then (4) can be rewritten as

8(k)=a8(k-1) + Kz (k) (5)

where A=[I—KH]F.

There is little loss in performance and significant
computational savings in using (5) rather than (4) to
filter the entire image. Efficient methods for det-
ermining and implementing K are necessary.

a) The Vector Filters

The system matrices for vector filters based on a non-
symmetric half-plane (NSHP) image model are derived
in [4], the quarter~plane (QP) model based on the
well-known separable exponential correlation function
is considered in [6] and the identification of a
vector autoregressive image model is described in [7],
as examples of different vector models. The image
column estimates are equal to the state vector est-
imates of (5). For an efficient implementation with
no image segmentation we choose to implement the
(arbitrary) vector filter as described by Panda and
Kak [6] for the QP model. We perform the relatively
trivial computation required to find the steady-state
K' matrix for a small-dimensional system, say 16x16,
based on the same image model, and extrépolate to the
full-size (image dimension M) matrix as in (6) below.

K'(1,1) ... K'(1,16)
. . 0
XK'(8,1) ... K'(8,16) ©
0 K'(8,1) ... K'(8,16)
KM= 0T R (6)
K'(8,1) ... K'(8,16)
K'(9,1) ... K'(9,16)
0 . N
L K'(16,1)... K'(16,16)

In practice, and particularly for the NSHP model,
most of the matrix energy is concentrated around the
main diageonal and we can filter the entire image
using only the values K'(8,6),K'(8,7),...,K'(8,10)
for example [8}.
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We now assume an arbitrary vector filter of the form
(5) and trxy to improve the step-response in the dir-
ection of processing. Let the filter input be

0 k=0
z(k) —{21 >0 @)

for an arbitrary k=0. Then the filter output with
zero initial conditions is

k-1 i
S(k) = Z A'Kz k21 (8)
i=0
Assuming stability, thle steady-state response is
A —1
= - 9
8) = [1-8]) "xz, 9
We now consider a modified filter of the form
S(x) = a8(k-1) + k[z(k)+Ce(k)] (10)

where e(k) is the current vector of edge weights

and C is a matrix to be determined. When 2z, is the
vector of all ‘ones' (i.e. a unit step on évery line)
then the input e, (k) corresponding to the operator

E, in (1) may be written as

1
k=0,1

e, 0 =J% (11)

0 otherwise

ignoring slight boundary effects at the image borders.
The first two non-zero terms of §(k) are now

£(0) = KCz, (12a)

-1
8(1) = [1+a]xcz, + Kz (12b)

1
We choose C such that §(1)=§(=®) from (9), leading to

¢ = {[z-a%]x} *ak (13)

with such a C matrix and any input for which (11) is
(approximately) true, steady-state conditions are
reached in two iterations.

Note that the utility of achieving steady state
is somewhat less than for the 1-D case of [3]. Given
a step input spanning only a small portion of the
observation vector, by the time steady state is
reached, the horizontal edges become blurred. An
improved scheme should also take horizontal edges
into account. We attempt to minimize these spreading
effects by localizing the area affected by the edge
weights, partially by use of the continuity criterion
previously mentioned. Various possibilities for
implementing the filter (10) have been considered
with the best results achieved as follows:

First rewrite (10) as

8(x) = a8(k-1) + Kz(k) + De(k) (14)
with D = KC = [:I—A2]-1AK ' (15)

The matrix D calculated from a small-scale system
can be extrapolated similarly as in (6), and we also
restrict it to being tridiagonal. Then

i)calculate the 16x16 matrix D from eq. (15)
ii)let d1=D(8,7),d =D(8,8),d4,=D(8,9)
iii)perform gﬁctor %iltering according to (5)
iv)to the ‘i element of s(k), add the quantity

[a,e, (1-1)+d,e, (i)+dze, (i+D)] -(16)

3=k

(denoting the i7" element of e(k) as gk(i))

Phis method works best on vertical edges spanning
more than three horizontal lines. With a real image
having more random edge characteristics, we expect
no steady-state values but the filter output is
still boosted at vertical edges, sharpening the
edges and increasing image contrast. The matrix D

corresponding to edge-detector E2 is

p = 2{ [1-2%] [z+a]} " ta%k (17)

b} The Scalar Filters

For these filters (also of the form (5)), the state
vector dimension is still essentially the same as
the image dimension, but the observations are scalar
and K is now a vector as opposed to a matrix. Matrix
definition with an NSHP model is discussed in [4].
Our implementation is similar, using the reduced-~
update recursion but with a small-scale system for
faster convergence. With a steady-state vector K'
from a size 16 system, we extrapolate the full-
sized vector as

T
Kyppq= (K" (1) oK' (8)70...0;K' (9) .. K" (16)] (18)

In practice, good results have been obtained with

only 5 non-zero elements in K . If {x(kx)} represents
the scan-ordered image process, an M-lag smoothed
estimate can be determined by using

2k = [0,0,...,0,1] B(k+m) (19)

and these filters generally perform better in terms
of signal-to-noise ratio (SNR) than the corresponding
vector filters. .

With a horizontal step input analogous to (7), the
scalar filter also reaches a steady state in the sense
that the output on any row of the image becomes cons-
tant after enough columns have been processed. We
again assume a unit step spanning the entire image
(vertical dimension M), scan-ordered edge weights

from E1 and now the filter has the form

s

-~ . A N 1
{kj = as{k-i) + KLz(x)fce(n)} {20)

to>

On each row, a steady-state vector g can be calculated
for any specific input step. For our assumed input

A -1

8(o) = [1-a] 'k (21)

Such an input produces non-zero edge weights only for
15k<2M. Thus, we set 5(2M+1)=8(») and solve for the
scalar ¢, resulting in the equation

2M -1 M+1 -1
ea|1-a""||1-a| 'k = A& ji-a| Tk (22)
\—-W—-—-/
X Y
We can find M estimates of c
. = Y. /X, 15£isM (23)
1 1 1

The filter parameter ¢ is determined by finding M'
estimates using a small-dimensional system and taking
the average of the estimates. This value is found

to be reasonable for step inputs of vertical spread
greater than or egqual to the number of non-zero
elements of the vector K [8]. For E2 we use

cafr+a®a? 2 [1-a] Tk = 222 ra] Tk 24)

IV RESULTS

We now present processing examples for the 256x256
test image of Fig.l1l, which is gquantized in 6 bits

and has a variance of 365. Fig.2 shows the degraded
image with white noise of variance 290 added for an
SNR of 1 db. The edge magnitude pictures’obtained via
the operator E, of (1) from the original and degraded
image respectiVely are shown in Figs. 3 and 4. The
processing results from 4 different 2-D filters and,
for comparison, the 1-D filter of iB] are presented.
For each filter we show the result without using any
edge information, then with the edge weights of Fig.3
and finally using the noisy edge weights of Fig.4.
Not including the edge detection, the edge-improved
vector filter requires about 12 multiply-and-adds

per point and the scalar filter 2 less.

Figs.5-7 are obtained from a vector filter based
on an NSHP image model estimated via least squares
methods and the corresponding scalar filter results
are presented in Figs.8-10. Figs.11-~13 and 14-16 are,
respectively, the vector and scalar filter results
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obtained using a QP model and separable exponential
correlation function. The 1-D results are seen in
Figs. 17-19.

In all cases, the inclusion of edge information
can be seen to sharpen the edges and increase the
contrast of the processed image. Whether the visual
quality is improved or not depends largely on the
objectionability of the increased noise in the flat
areas. The results using the original image edge
weights are generally very good but the edge picture
of Fig.4 contains too much noise to provide a good
visual result. Best results have been obtained for
degraded images having SNR of V5 db or greater,
where the edges can be fairly reliably detected.

The 1-D filter can produce good visual results (Fig.
18) even though the noise level remains relatively
high. In experiments it was found that the QP-model
filters were capable of better SNR performance than
the NSHP ones, but they were much more sensitive to
noise in the edge weights (see Fig.13), possibly
related to the pixel "correlation distance" being
significantly higher for the QP model. The QP results
also tended to have an objectionable criss—cross
noise pattern. The scalar filter generally outper-
forms the corresponding vector filter because of the
256-lag smoothing possible with no extra computation
(providing a delay is permitted).

v CONCLUSIONS

Methods have been presented for improving the res-
ponse of an arbitrary 2-D scalar or vector Kalman
filter in the presence of image edges oriented per-
pendicular to the direction of processing. The
methods are particularly useful when most of the
image edges are so oriented. Results show that even
in the very noisy case image contrast is increased
and edges are sharpened. Subjectively, the result
may not be better due to increased noise in the flat
areas. However, in lower noise cases where the edges
can be reliably detected, the visual gquality is sig-
nificantly improved by using the (noisy) edge weights.
Further improvements are being considered by using
horizontal edge detectors (transposes of those in
(1)) as well as vertical. Then different actions
could be taken depending on the relative magnitudes
of the horizontal and vertical edge weights at each
point.
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FIGURES

Fig. 1 Original image, variance = 365

Fig.3 Edge-weight picture from original
image
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Fig. 4 Edge-weight picture from Fig.2, with
threshold and continuity criteria.

e

6 Vector NSHP + good edge = imp. = 11.0°db

Fig. 7 Vector NSHP + noisy edge 7 imp.=9.,73 @b Fig. 11 Vector QP = imp. = 8.51 db
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Fig. 12 Vector QP + good edge -+ imp. = 12.1 db Fig. 16 Scalar QP + noisy edge » imp. = 10.1 db

Fi.. 13 Vector QP + noisy edge =+ imp. = 7.66 db Fig. 17 1-D algorithm -~ imp. = 6.21 db

[

Fig. 14 Scalar QP ~ imp. 9.85 db Fig. 18 1-D alg. + good edge - imp. = 8.1 db

Fig. 15 Scalar QP + good edge * imp. = 11.0 db Fig. 19 1-D alg. + noisy edge - imp. = 6.8 db



