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RESUME _ SUMMARY

Dans cette presentation nous etudions comments In this paper we study the problem of restoring
reconstruire une image en partant exclusivement de an image from the magnitude of its Fourier transform.
1'ampleur des transformations de Fourier. Novs We use a new algorithm called the method of general-
utilisons un nouvel algorithme appelle la methode de ized projections. The algorithm can detect two path-~
projection generale. Cet algorithme peut detecter ological phenomena: traps and tunnels which appear
deux phenomenes pathologique: pieges et impasses qui as false solutions. Results are presented that il-
semblent etres les solutions veritables mais en lustrate correct restorations from magnitude infoxr-
realité sont de fausses solutions. Des resultat sont mation only.

presente’'s a'l'appui.
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INTRODUCTION

A fundamental idea in image restoration is that
the signal or image to be restored, f, is known to lie
in m given sets C,, i=1,2,...,m where each of the sets
represents a constraint on the image. Associated with
each set C, is a projection operator P,, i=1l,...,m.

In general, for all sets -- not just cOnvex ones —-- we
call g=Pih the projection of h onto Ci if geCi and

Ho-n[| = min |ly-n]| eh)
all y€Cl

for i=1,2,...,m. llg]| denotes the norm of g.

Remarks:

1) The projection as defined in Egq. (1) is a
unique point if C, is a convex set. When C, is non-
convex there may “be a set of points that satisfy the
definition of projection, however, in practice, we can
also find a procedure for uniquely choosing one of
these points, usually through the demand of satisfying
another condition. This eliminates the ambiguity that
would otherwise result from non-singleton projection
points. For instance in the restoration from magni-
tude problem, in projecting onto the set of functions
with prescribed Fourier magnitude, the phase of the
estimate at the n'th iteration uniquely defines the
projection.

2) We assume that in all problems of interest
there exists at least one point in C, that is the
projection of an arbitrary L. signal (L2 is the space
of square integrable functions).

A method for restoring f when all the sets are
convex is given by the method of projection ontc con-
vex sets (POCS). The POCS algorithm [1]

= i 2
fn+l Tsz...Tmfn, fo arbitrary, (2)
where
A X
T, =L = A, (P,-1), i=1,2,...,m, (3)
i iti

is known to converge to a point in C

=iﬁl Ci provided
that CO is not empty and O<Xi<2.0.

0

RESTORATION BY GENERALIZED PROJECTIONS

If one or more of the set Ci is non-convex then
the convergence of the algorithi given by Eq. (2) is
not guaranteed. Nevertheless the algorithm for m=2,
i.e.,

£ =TT fn’ £ arbitrary (4)

0

have some properties that make it useful for image
restoration. Since convergence of Eq. (4) is not as-
sured we need some measure that will allow us to
gauge the performance of the algorithm during the it-
eration procest. The performance measure is needed
also as an indicator for when parameter changes are
required in the algorithm in order to improve its
performance. Such a measure is provided by the
summed-distance-error (SDE) defined as follows. For
any vector g in L2 the SDE, denoted by J(g}, is given
by

3@ = |[p g-g]| + [|p,9-q]]. (5)

The SDE is the sum of distances from g to the two sets
Cl and C_. Note that J(g)20 and J(g)=0 if and only if
geC_nC,_.” When J(g) is small the signal is "close" to

satlsfying all the constraints imposed on it; when it

is large the signal is far from satisfying the a priori
constraints. The main property of the recursion given
by Eq. (4) is the set distance reduction property de-
scribed in the following theorem.

Theorem: The recursion given by Eq. (4) has the prop-
exty

< f )<
J(fn+l) J(T2 n) J(fn) (6)

for every Al and Xz that satisfy
osAiSA(fn), i=1,2, (7)

here A(fn) (not given here because of its lengthy form)
depends only on the latest estimate £ and on the oper-
ators P ,P2. The proof of this theorem is given in
Ref. [27.
Remarks:

1) It can easily be shown that the range of Ai in
Eq. (7) always includes the interval [0,1].

2) The set distance reduction property described
by Eg. (6) does not extend in general to algorithm
such as in Eq. (2) with m>2. [See [2] for a counter
example] .

3) Despite the fact +hat the theorem is not valid
for m>2 the algorithm gi 'n by Eq. (4) is not especial-
ly restrictive in practi..:. This is because we can of-
ten combine those proper®.ies of the signal which are
easily expressed in the space domain to one set C
whose associated projection operator P. can be calcu-
lated without too much effort. Simila¥ly the proper-
ties of the signal which are easily expressed in the
transform domain can be combined into a second set C
and the corresponding projection operator P2 can again
be calculated without too much effort.

4) The algorithm given by Eq.
with respect to A, and A2 on a per-step or per-cycle
basis where the S%E, J(£f7), is used as a criterion for
minimization. More about this appears later in connec-
tion with the RFM problem.

(4) can be optimized

5) The pathological behavior sometimes exhibited
by the algorithm of Eg. (4) can be explained by the ex-
istence of: (i) fixed points of the operator P.P. (g
is a fixed point of PlP if g=P_P_g) which are not
valid solutions. We cail these pdints traps and they
occur only when non-convex sets are involved; and
(ii) tunnels in which the solution is approached so
slowly that for all practical purposes the algorithm
has ceased functioning. Traps and tunnels are illus-
trated in Fig. (1).

THE RESTORATION FROM MAGNITUDE PROBLEM
A. General

The two sets involved in the restoration from mag-
nitude (RFM) problem are: (. the set of space-limited
functions (any two level amp}itude constraints i.e.,
asf<b can easily be added) and C_ the set of all func-
tions which have a Fourier trans%orm magnitude equal to

some real positive prescribed function M{(w). Thus
Cl = {g®): gx)=0 for |x|>a} (8)
C, = {gx)oc@w :|6W) |=Mw) for all w}. (9)

It can easily be verified that C. is convex -and that C2

is non-convex. The projections %l and P2 onto Cl and
C2 are respectively given by
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gx), |x|<a
Plg(X) = (10)
o] . [x]Za
and
Q1% W) {11)

Pzg(x)+*M(w)

where ¢ (w) is the phase of G(w). Pzg(x) is uniquely
defined by Eg. (11) although C2 is non-convex.

The general restoration algorithm is given by
Eq. (4) with T,, i=1,2 defined in Eq. (3):
T,=l+>\,(P.--l).:L This algorithm has the property of
s&t-distafice reduction, or the property that

{3(£f )}KL is a non-increasing sequence, for (at
leas®) Phose values of Al,kz that satisfy the inequal-
ity (6).

Fundamental Remark: When A =A2=l, Eq. (4), with P
and P_ as defined in Egs. (io) and (11) reduces to
the Gérchberg-Saxton algorithm (3] and the property
that {J(fn)}:_o is a non-increasing sequence becomes

equivalent to the non-increasing error property de-
scribed by Fienup [4]. Also it is readily shown that
Fienup's [4] output-output algorithm is equivalent to
a special form of the set-distance reduction algor-
ithm.

B. Optimization of the Relaxation Parameters (RP)

It can be shown [2] that an optimum (per-cycle)
algorithm when Cl is a linear subspace is given by

f = £ i . 12
bl P1T2 " f0 arbitrary (12)
This algorithm is generally near-optimum when C. is
not a linear subspace. The optimal value of A_"in
Eg. (12) can be found by a search which is relatively

fast when Cl is linear.

C. Traps and Tunnels in the RFM Problem

The algorithm of Eq. (12) is caught in a trap if
f =p T2f yet £ 1is not one of the valid solutions.
RBcall“that a vhlid solution satisfies feC_nC.. When
the algorithm enters a tunnel the change from itera-
tion to iteration is negligible, i.e., £ zPszfn. In
the special case of restoration from magnitude the
existence of traps cannot be easily demonstrated
theoretically. However, the existence of traps is
supported by the real difficulties one encounters in
restoring some signals or images from their magni-

tudes.

The following two observations are of great
practical importance regarding traps and tunnels.
(1) The SDE can be used to detect traps. By this we
mean that being in a trap is equivalent to no change
in J(fn) from iteration to iteration.

(ii) When P_ is a linear operator (as in Egq. (10))
then a correéct solution f lies in a hyperplane ortho-
gonal to the vector P_f -f , i.e., £ ~f is orthogonal
to P f ~-f . If Pl is 1ot n1inear this is only approx-
imatel§ true.

EXPERIMENTAL RESULTS

In this section we describe the results of res-
torations from magnitude for two synthetic images:
IMAGE 1 and IMAGE 2 given in Fig. 2 and 3 respec-
tively. The non-zero portion of each image is con-
fined to a region of 30x30 pixels in the center of a
total field of 64x64 pixels. IMAGE 1 is composed of

six gray levels with minimum level 0 and maximum level
1. IMAGE 2 is a two level binary image of O0's and 1's
only. For the restoration experiments we used the
four algorithms described below:

1) The Gerchberg-Saxton (GS) algorithm (£ +1=P1P2fn)
with C_,C_,P. and P_ as given by Egs. n
-1t 21 2

2) The same algorithm as in (1) except with C__ and

L
. . C
P, replacing Cl and Pl. ClL is a subset of 1

that includes a two-level amplitude constraint:
C1L={g(x): g(x)=0 for [x|>a and

0<g(x)<1 for |xl|=al, (13)

and PlL is the projection operator that projects onto
Crn

3) The relaxed projections algorithm i.e., the algor-
ithm using optimum relaxation parameters as given by

Eq. (12) with Cl'CZ'Pl and P2 as before;

4) The same algorithm as in (3) with ClL and PlL re—

placing Cl and P,.

In the relaxed algorithms (3) and (4) a search for the
optimal value, AZm' of A2 was made.

Figure 4 gives the restored images aftexr 30 iter-
ations for the above four algorithms with initial
points f =0. Panels a and b of Fig. 4 result from al-
gorithms (1) and (3) respectively (i.e., without using
the two-level constraint) and give poor but recogniz-
able images. The positive background in Figs. 4a and
4b (instead of zero) is to the negative portions in the
restored images which make it necessary for the sake
of display to shift the level of the images upward.
Figures 4c¢ and 44 result from algorithms (2) and (4)
respectively (i.e., with the two-level constraint) and
show much better restorations. Indeed algorithm (4)
yields a result indistinguishable from the original.
Note the coordinate reversal of the restored images:
if f(x,y) is the original image then f{-x,-y) is the
coordinate-reversed image and has the same magnitude
function. This coordinates reversal can be seen in the
following figures as well. Figure 4 shows the signif-
icant improvement when relaxation parameters are used.
The example in Fig. 4 also shows the importance of
projecting onto the sets of functions satisfying the
two-level constraints for good restorations using a
relatively small number of iterations. Figure 5 shows
the restorations of IMAGE 2 for the same four algor-—
ithms as before and for the same initial point. 1In
Fig. 5 the restored images for the four algorithms are
given after 100 iterations. The very poor restora-
tions together with the very small changes observed in
J(f ) after a certain number of iterations is sympto-
matic of the condition whereby the algorithm is either
near a trap or is approaching the correct solution
through a tunnel.

We also wanted to demonstrate the effect of the
starting point. Figure 6 shows the results of the res-
toration of IMAGE 2 with an initial point £ . (x,y) de-
fined as follows: Let S_be the support of f(x,y)
i.e., 30x30 points in the center of the total field of
64x64 points. f0 (x,y)=0.72 for a region of 20x20
points in the cen%er of 8 and £ .(x,y)=0.36 for the
remaining points of S _. Figuré 6 shows the restored
images for this case githout (a) and with (b) the use
of relaxation parameters.

Here we clearly see the importance of the initial



346

IMAGE RESTORATION BY THE METHOD OF GENERALIZED PROJECTIONS
WITH APFLICATION TO RESTORATION FROM MAGNITUDE
Restauration d'images & partir d'information de grandeur par
la methode des proiections

aharon Levi and Henry

énéral isées
tark

point for rapid restoration. With £ _(x,y) we get a
recognizable image with pure proejctidns and a very
good image with the use of relaxation parameters,
after only 40 iterations.
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Fig. 1 TIllustration of a trap and tunnel for an al-
ithm of t £ =P f
gori o he form ntl le n
(a) Starting at the point £ the sequence {f }
converges to a trap point T while the
true solution must belong to Clncz.

(b) Starting at the point £ the algorithm enters
into a long tunnel towards the solution at
the point S.

Fig. 4

(a)
(b)
(c)
()

Fig. 2 Original Image IMAGE 1.

Fig. 3 Original Image IMAGE 2.

Restoration of IMAGE 1 After 30 Iterations
With Initial Point fo=0.

(Upper left). Restoration by £ =p_p_f

n+dl 17 2'n°

(Lower left). Restoration by f ol PlTZf .
i i = £

(Upper right). Restoration by f il PlLPZ

. . _ £
{(Lower right). Restoration by fn+l PlLT2 a
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Fig. 5 Restoration of Image 2 After 100 Iteratinns

with £ =0.
o
(a) (Upper left). By fn+l=PlP2fn'
(b) (Lower left). By fn+l=PlLT2fn'
i = p f .
(c) (Upper right). By fn+1 PlL 25
(d) (Lower right). By £ P T f .

n+l= 1L 2 n

Fig. 6 Restoration of IMAGE 2 After 40 Iterations
With Initial Point fOl(x,y)=O.72 for 20x20

Pixels in the Center of the 30x30 Pixels of
the Support, S , of the Function f.

fOl(x,y)=0.36 Bor all other Points of Sp.

; = £ .
(@) (reft). By £ =P, P,

(b) (Right). By fn+l=PlLT2fn'



