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RESUME

En Tomodensitométrie, il est bien connu que
l'acquisition sur un tour complet, avec un détec-
teur centré, présente une redondance. 11 est aussi
connu qu'en décentrant le détecteur d'une fraction
de pas d'échantillonnage, les données acquises sur
un tour complet ne sont plus redondantes et peu-
vent étre réarrangées, puis interpolées pour ac-
croitre 1l'échantillonnage spatial. Aprés quoi, il
suffit d'appliquer une reconstruction adaptée pour
obtenir un gain en résolution spatiale. Cette ap-
proche du mode haute résolution, par réarrangement
des données, présente cependant des inconvénients.
En effet, les technigques de réarrangement deman-
dent beaucoup de temps, & moins d'utiliser des
matériels spécialisés. En plus, elles sont tres
sensibles aux imprécisions de la machine (décen-
trage non parfait, échantillonnage vue) et au mou-
vement du patient.

Nous proposons dans ce papier, une nouvelle appro-
che du mode Haute Résolution qui présente 1'inté-
rét de ne recourir & aucune technique de réarran-
gement. En géométrie parallele, la théorie propo-
sée est parfaitement exacte. En géométrie conique,
bien que la transposition ne soit pas mathémati-
quement exacte, le gain en résolution spatiale est
cependant substantiel. La performance de la métho-
de proposée a été démontrée, en géométrie conique,
dans les conditions d'une acquisition réelle des
données.

Mots clés : Tomodeﬁsitométrie, détecteur décentré,
Haute Résolution, sans réarrangement, Reconstruc-

tion conique, Tomographie a Rayons X.

SUMMARY

In CAT, it is known that with a centered detector,
data collection over 360° presents a redundancy .
It is also known that by off-setting the detector
by a fraction of ray-sampling, data collected over
360° are no longer redundant and can be rearran-
ged and interpolated to increase the spatial sam-
pling. Subsequently, an appropriate reconstruction
needs only to be applied to increase the spatial
resolution. However, this approach to high reso-
lution presents some drawbacks. First, the proce-
dure of rearrangement is time consuming unless
specialized hardware is used. Furthermore, inaccu-
racies in data measurement, due to detector drift
or patient motion, can produce various artifacts.

In this paper, we present a new approach to High
Resolution, in which no rearrangement scheme is
required. In Parallel geometry, the proposed
theory is perfectly exact. In Fan Beam geometry,
although’ the transposition is not mathematically
exact, the gain of resolution is nevertheless
substantial. The effectiveness of the proposed
method has been demonstrated, in Fan Beam geome-
try, under conditions of real data acquisition.
Key words : CAT, off-set, High Resolution, without
rearrangement, Fan-Beam Reconstruction, X-Ray
Tomography.
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I. Introduction

In €T Reconstruction, the ray sampling is known to
be a significant factor of the spatial resolution
i1,2]. On 3rd generation Scanners (Rotate-Rotate
without translationnal movement, cf. fig 1) the
spatial sampling frequency of each projection is
fixed once for all when designing the detector ;
the latter can be characterized by its ray sam-
pling period AY.

Therefore, in order to increase the spatial reso-
lution of these machines, several authors have
studied some possibilities to artificially in-~
crease the ray sampling frequency. Since the data
acquisition over 360° with a centered detector
presents a redundancy, Peters and Lewitt |3]
suggested the acquisition over 360° with a quarter
ray detector offset (A¥/4) (cf. fig 1). The data
collected in this manner are no longer redundant
and can be rearranged, then interpolated to form
new projections with a higher sampling rate. In
|31, the rearranged data correspond to a set of
projections obtained with an equivalent parallel
geometry. This procedure requires two-step inter-
polation :

-~ Interpolation between views

-~ Interpolation between rays

Other possibilities of data rearrangement are

found in |4] ; in particular the existence of

rearrangement scheme without interpolation is
shown. These techniques present however some
drawbacks :

1) Storage problems (In order to form one new pro-
jection, it is necessary to simultaneously pro-
cess many original views)

2) Data processing time

3) Lack of Robustness (high sensitivity to mecha-
nical inaccuracies, patient motion...)

In this paper, a new approach to high resolution
is proposed in which no rearrangement is required.
The proposed method consists in performing inde-
pendently on each original projection of N measu-
rements a simple operation (to be detailed later)
which produces 2N measurements. Afterwards an ap-
propriate Filtered-Backprojection algorithm |5]
needs to be applied to obtain an increase in
spatial resolution.

Part 11 deals with the theoretical development in
Parallel geometry. Part III concerns the appli-
cation to Fan Beam geometry. Finally Part IV pre~
sents the conclusions.

II. Theory in Parallel Geometry

A. Preliminary studies

We shall study, in this chapter, some properties
of the Filtered-Backprojection associated with a
symmetric kernel k (k(s)szk(-s)). Let's introduce :

(1) the Deconvolution D defined by :

Vf function of 2 variables (8,s),
if g = D.f then :

a(8,8) £ /77 (0, t)k(s-t)dt

(2) the Backprojection R defined by :

(Rg) (x,y) 4 jSZﬂ-g(Q,x cosB+y sin8)de (2.1)
(acquisition over 360°)

-jar g(8,x cosB+y sing)de (2.2)

(acquisition over 180°)

iéﬂ and lﬁ_are defined by the following relations:

a
£2T f = (2.1)

Remarkable properties of of and l are (see |6}
2T T
for proof) :

A
iwf = (2.2)

r . .
P.l- ¢2ﬂ.ano J;rare linear operators

P.2- If we defined T by F(8,s)3F(8+T,-s), then we
obtain : L[ -
opf = Lof o+ L F = °£1r (F+F)

P.3- If f(B8,s) = pg(s) the linear attenuation
function, then f=f and £2ﬂ'f =2 lﬁf
Discretization

Without loss of generality and for simplicity, we
consider only the discretization of s while lea-
ving B8 continuous (*). We will represent the dis-
cretization of an operator or funetion by a
superscript N. Let's introduce the following
relations :

s; 4in g {(3) and s’y i 31 H

(3) ==> =S5 T S_(1,1) (4) and

(3') == —s'i = s'_i (4")

Ve = %ﬁ the Nyquist frequency associated with
the spatial sampling period h ; (5)
(8,i) £ £(a,s,) (6)
gN(Q,i) 4 9(8,s,) (7
kN(i) & k(s'i) (kernel sampled at

points s'i = i.h) (8)

- (9) hypothesis : In the following, we assume

f(8,.) and k to be band-limited to [-oc, vC].

It follows that g = Df is also band-limited
to [—~%,~E].

(10) Discrete deconvolution DN (associated with

the kernel kN)
N a

oM N, 2 T N, kM-

J
N N

(9) ==> gN =D .f

(*) The only condition to be satisfied is for T/A8
to be an integer, where A8 is the angular sam-
pling distance.



315

S.C. TAN, D. LE GALL, T.H. NGUYEN
M. GAMEIRO PAIS, C. BENCHIMOL

RECONSTRUCTION CONIQUE : HAUTE RESOLUTION SANS REARRANGEMENT

FAN-BEAM RECONSTRUCTION : HIGH RESOLUTION WITHOUT REARRANGEMENT

(11) Discrete Backproijection RN

A
(RYM) (x,y) 2
2T -~
j; g(8, x cos8 + y sin@)do (11.a)
jb” g(8, x cos8 + y sinB)de (11.b)

§(9,s) is a function of the continuous varia-
ble s, obtained by the interpolation of

N ~
9(8,.) 3 let § 8 I.q" (I is a 8 - invariant
interpolation operator).

As in the continuous case, we define :

i;'Tr N & (11.a) L N8

Principal properties of sz and i;‘r are
(see |6 for proof) :

PNI- If I is a linear operator (*) (in a slightly

restricted sense a convolution or a
Whittaker-Shannon - Type Interpolation [7]) ;

then ign.and i#_are linesr

pNa- IF{?N(Q,i) £ f(o,s,)
I linear and symmetry-preserving (¥*¥)
then F(8,1) = F(0+T,=(i+1)) (12)
and oL £ = L3 N LN L N LY
PN3- 1r fVo,1) = pg(s;) discretization of the

linear attenuation function,

=N N N N N N
then £ = £ and ) F = 23 f
(*) Do not confuse with the classical linear
interpolation
(**) 1 is symmetry-preserving iff for any pair of
discrete functions fT & fg which are
symmetric, their images I.FT & I.f; are

also symmetric.

B. Application to High Resolution

In the following, we assume that all conditions

required for PV1, PN2 & PN3 are fulfilled. Let 4x

be the ray sampling period and x, = idx + 8x/4 the

ray sampling. i

We - assume also for simplicity (see Appendix 1)

that the projections Pg (x.) are readily avai-
i

lable.

Finally let us denote dx = 2h and consider the 2

sequences (si),and (s'i) defined by (3) and (3').

We can write Spp = X (13)

Let's define fN by relations (14) :
N :y D
£(8,2i) € pylx;) (14a)
’ 8 i (14)

Nea,2i+1) & B2 [Patx;)+pglx;, ;)] (140)

Using (12) & (14) we can compute N

N6,21) = FN(B+T,=(2i+1)) = FN(G+T,—2(i+1)+1)

Pr2[pgr*_(141)*Pg, ]
= M2pg(-x_(541))Pg(~x_;)]

(since pg+v(y) = pg(—y))
==> F40,20) = A2 [pg (s55,1) + Py (83 )] (15)
#N(g,2i+1) = FV(aem, ~(2i42))
=°<pg+.". (x—(l+l))

=Xpg (=x_(341))

==> F(8,2i+1) =«py(s,; ;) (16)
(L4a)&(15) ==> (F'4F")(8,21) =Xpy(s,,)

w2 [ogls,y; ) )+pglsy; 1)) (D)
(14b)&(16) == (N7 (0,2i41) =&pg(sys, 1)

/2 [pg(sy;,9)+Pg(5,5)] (18)
(17)&(18) ==> (F'+F")(8,1) =Xpy (s,)

w2 Joglsy,)+pg(s; 1] (19)
Let
ag(s) Epg(s) + /2 [pglssh) + pgls-n]  (20)
4 2 F.T (gg) (F.T : Fourier Transform) (21)
sg R (pg) (22)

(20),(21)et(22) ==> gg(v) = F(V)py(v)
where F(v) =d-ﬁ”COSWV/VC (23)

If we assume now that Pg is band limited to
[-Vc’vc] ; then

(23) ==> gg = H.pg where
F(v), Ivl € vo} (24)

e

H(v)

ne

H(v) = 0, else

ifeC+p= 1, then H(v) is the generalized Hamming
window.

(19)&(20) ==> (F+7V)(8,1) = a(8,s,) = Ve, 1)
N N N N N N N
==>°C21T f :oﬁ,n, (f+f ) :‘Iﬂ— q (25)
Finally, let
K é F.T(k) (k kernel associated with igﬂand i#)

SR RO

kH =
Lgv.& L;.be the Reconstruction operators
associated with the kernel kH’ then we obtain :
N N N N N N
0(-2.n_f =4} q = Lyp (26)
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The figure below illustrates this result schema-
tically.

Rearrangement Reconstruction
combining 2 —'pg(si) N
opposite views L
kn
ol
pg(xi) kH_F.T (k.H)
kernel ¢ K same
results

Transformation N Reconstruction
defined by |5 f(8,1)y N
relation (14) . £2W

III. Fan Beam Geometry

In Fan Beam Geometry, the theory developped in
section 2 is no longer exact. Actually, 2 opposite
fan-projections cannot be combined as in the
parallel case (see e.g |3[).

However, in the proximity of the center, the X-ray
beam is nearly parallel. Therefore, the method is
relevant when applied to small objects lying on or
near the center. This is confirmed by simulation
results. The phantom used consists of line-pairs
with high spatial frequencies 8.33, 10., 12.5,
14.33 1lp/cem (fig 2). Each spatial frequency is
materialized by five equally spaced lines of equal
thickness.

Two machines have been simulated whose characte-
ristics are as follow :

M1 M2
fan angle 4]1° id
number of rays 1024 2048
beam width 2x(41/1024) id
number of views 1024 id
focal/center distance 750mm id

DC1l, DOC2 are centered-phantom data computed with
Ml, M2 respectively. The Nyquist frequency asso-
ciated to the ray sampling M1 is 10 lp/cm. Thus,
the standard reconstruction with DCl should not
allow one to recover the spatial frequencies above
10 1p/cm (see fig 2a). The same data DCl, when
applying the new approach to High Resolution,
yield results shown in fig 2b. Fig 2c shows the
results obtained with data DC2 in conjuction with
the standard Reconstruction associsted with the
ray sampling period h = 41/2048.

As expected, there is no significant difference
between fig 2b and fig 2c. Taking the 14.33 1p/cm
profile in fig 2b shows clearly that spatial fre-
quencies as high as 14.33 lp/cm are recovered

(fig 2d).

We also tested the new method with the phantom
lying as far away as 10 cm from the center. The
gain of spatial resolution is still substantial.
The effectiveness of the method has been demons-
trated under conditions of real data acquisition
on the THOMSON-CGR CE 10000 machine (fig 3).

IV. Conclusions

We have explored with success a new approach to
High Resolution Reconstruction. This new approach
presents the following advantages :

- a robustness to the mechanical imperfections
(imprecision in the offset, in angular posi-
tions...) and also to patient motion. Actually,
since the transformation is performed indepen-
dently on each projection, the consistency of
data is preserved. This 1is not the case with
rearrangement techniques and may lead to severe
artifacts [8|

- a cost-effective implementation on current 3rd
generation scanners.

Comparisons of this new approach with the rearran-
gement techniques are under way. The results will
be reported in a later publication.

Appendix 1

In reality, due to the beam width, the detector

provides, instead of p,(x,), values py(x,) defi-
. 871 971

ned as following :

X.+a
apg(xi) =/f 1 pg(x)dx (2a = beam width)
X,~a

i

Since we have also apg+1r(y) apg(--y), every
result obtained with pg(xi) can be transposed

simply to apg(xi). In particular, we obtain :

N N N N N N
iz'ﬁ' af :c[_n, ap :iﬂ.p

iN

o ¢ Reconstruction associated with the kernel akF

a S+8
ky(s) =f ky(£)dt 5

S-a
k. : kernel associated with LY
y ¢ kernel as e
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Reconstruction
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4
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Positions of centres
of detector elements

Fig 1. Fan-Beam Geometry with quarter-ray detec-
tor off-set

Fig 2a. Reconstruction of DCl using standard
algorithm

Fig 2b. Reconstruction wusing High Resolution
algorithm

Fig 2c. Reconstruction of DC2 wusing standard

algorithm

Fig 2d. Reconstruction profile of the spatial

Fig

frequency 14.33 lp/cm using High Reso-
lution algorithm

N-.0p

Reconstruction of real  data acquisition
(THOMSON-CGR - CE 10000 machine).(top):
Standard algorithm. (bottom):High Reso-
lution algorithm




