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RESUME

Abstract:

This paper addresses the reconstruction of a
function from its rectangularly sampled Radon
transform. The Radon transform | sampling
requirements are reviewed and a
convolution/backprojection reconstruction
algorithm is described. .Two basic issues are
addressed., First, it is shown that even when the
Radon transform of an image is adequately sampled
(in the Nyquist sense), the standard
convolution/backprojection algorithm may lead to
a poor reconstruction unless the Radon transform
is first reconstructed to a required set of
projections. Secondly, when the Radon transform
is undersampled in projectioms, recomstruction
approaches are illustrated which span the range
from those which achieve a high wniform—
resolution reconstruction with large amounts of
aliasing artifacts to those which achieve a low
nonuniform-resolution reconstruction with
virtually no aliasing artifacts. Recomstruction
filters which seek a compromise between those two
extremes are defined.

I. Introduction

Image formation is an efficient means of
displaying data derived from measurements and of
conveying vast amounts of information rapidly.
Since its introduction, computed tomograpby has
revolutionized areas of science where the
instrument of imaging was previously unavailable.
In spite of the different physical - situations
which give rise to tomographic imaging problems,
2ll share certain similar mathematical features.
In particular, in each case the 2-D measurement
process can be viewed as a system with an
associated measurement operator S. This operator
maps & bivariate slice function f (assumed here
to be continunously defined over a domain D in the

xy plane, see Fig 1) into a discrete set of
measurements:
S
fiz,y) - - ——9{zk, k=1,2, ..., K} (1)

Very often the transformation (after perhaps some
preprocessing) can be reasonably well
approximated by a linear integral transformation:

SUMMARY

2, = jj f(x.y)Sk(x.y)dx dy (2)
D

In this paper attention is focused onto a
standard tomographic imaging problem [1-12] which
is concerned with reconstructing f(x,y) from a
set of (parallel-beam) projections that are
uniformly spaced in angle over 2n radians, see
Fig. 1,

subject under study. This oftem results in a
sampling grid that is sparse. A  commonly
encountered situnation involves image
reconstructions from a limited number of
projections. This problem is the focus of this
paper. Since measurements at a fixed value of ©
are relatively inexpensive we shall assume that
the sampling in the wu-direction along each
projection is adequately denmse. The consequences
of undersampling in the wu-direction have been
discussed previously [8,9] and the insights
gained there can be extended to the current work.
The basic approach taken in this paper relies
heavily on multidimensional signal theory and
signal processing techniques [13-15].

II. The Reconstruction Problem and the
Rectangularly Sampled Radon Tramsform
Consider the case where each measurement is

an integral of f(x,y) over a linme in the xy plane

defined by :

x cos em +y sin § = L (3)

Under these conditions -the measurement p(Bm, v,)
is a sample of the (6u - - coordinatized)
continuous Radon transform [6] defined by

p(8,0) = RIf(x,y)] = jt[ £(x,y)

8(u - x cos 6~y sin 6) dxdy (4)

vhere & (u)

standard tomographic imaging problem involves a
uniformly spaced set of projection measurements
where each measurement is an integral of fix,y)
over a strip in the xy plame as shown in Fig. 2.

is a Dirac delta function. A more

Data aquisition is typically expensive,
both literally and in terms of invasion of the
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In this case the resulting measurement function
p(Om,u ), defined on a discrete set of points
(em,un?. provides a uniform sampling of a blurred
or smoothed version of the Radon transform of the
(continuous) slice function f(x,y) [9]. This 2-D
sequence of points in the Bu—-plane is referred to
as the rectangularly sampled Radon transform and
is illustrated in Fig. 3. Thus, the measurement
process maps the continuvously defined bivariate
function f(x,y) into a discréetely defined 2-D
sequence function p(mA®, nAun); i.e.,

s
f(x,y) - - ——p(mA8, nAun) (5)

‘The fundamental objective of the imaging problem
is to reconstruct f(x,y) (or at least an
approximation to it) from its rectangularly
sampled Radon transform. The basic philosophy of
our approach imvolves a reconstruction of the
Radon transform from the measurements followed by
an appropriate inversion algorithm on the
reconstructed Radon transform. For a large
class of problems, when measurement blurring
occuers it represents a space—invariant smoothing
of the Radon transform. This is efficiently
handled in the Radon transform domain by standard
signal processing techniques [9,10,15]. The
restored (deblurred) Radon transform is then
inverted to recomstruct f(x,y). This approach,
avoids the difficulties and complexity of
deblurring in the image space where the effects
of the measurement blurring may be space varying
[9,11,16], Comsequently, for simplicity in the
development presented in the following sectionms,
we assume that the (unblurred) Radon transform
is directly measured.

III. Sampling the Radon Transform

For a slice function f with compact support
on a disk of radims R, the Radon transform is
restricted to a strip of width 2R, see Fig. 4b,
and is periodic in © with period 2n. Rattey and
Lindgren have shown that under these conditions
the band region of P(we, w_ )}, the two—dimensional
Fourier transform of p(G,u? for arbitrary f(x,y),
is fan (or bowtie) shaped and its approxzimate
boundary (see [7,8] for a detailed discussion on
the boundary of the band region) satisfies

P(wg,w ) = 0 for |wo| > Rlw | + 1 (6)

If f(x,y) is effectively frequency limited to a
¥W-disk, as in Fig. 4c, then the Fourier transform
of the Radon transform also satisfies

P(w,,w ) = 0 for lw I > W (7)
8" 'n u

and P(wg, w ) is supported only on an RW-bowtie
as shown in Fig. 4d. (This bandregion shape
means that the minimal (Nyquist) sampling of the
Radon transform is achieved with a hexagonal
sampling of the Ou-plane [8,17]. Here however we
focus only onto the more standard rectangnlar
sampling grid which is most commonly studied.)
Clearly, for the rectangularly sampI%d Radon
transform, aliasing is avoided (see Fig. 5), if
the sample grid spacing in Fig. 3 satisfies

Awu < al/w (8)

and

A 6 < n/(RW+1) (9}

This means that in order to avoid aliasing when
imaging an arbitrary object the number of
projections, M, of f(x,y) effectively spanning 2=
radians must satisfy

_2n
M= K§-> 2(RW+1). (10)

Because of symmetry, these M projections spanning
2n radians can actually be obtained with only M/2
projections spanning x radians [9,10].

The approximation of (6) is an upper bound
on the band regiom of the Radon transform of
f(x,y). For certain special functions, this band
region boundary is pessimistically large [8-12].
For instance, the Radon transform of a circularly
symmetric function has a band region confined
solely to the w, axis, i.e., Plwg, wy) = 0 for wy
# 0. Thus, (10) is & sufficient but mnot a
necessary sampling condition. It is shown later,
however, that when sampling is more sparse than
(10) special precautions must be takem if an
inverse Radon transform (convolution-
backprojection) approach to reconstruction is
taken. Basically it is shown that it is
desirable to fill in missing views so that (10)
is satisfied.

If the Radon transform for these special
objects is bandlimited in the 6 direction to My <
RW + 1, i.e.,

P(we, wn) = 0 for |we| > Hb (11)

then to avoid aliasing the spacing between
projections must satisfy

A6 < ﬂ/Mb (12)

or the mnumber of projections M effectively
spanning 2n radians must satisfy

M > ZMb (13)

It is again pointed out that these M projectioms
spanning 2n radians can actvally be obtained with
only M/2 > Mb projections spanning m radians.

IV. Reconstruction When Adequately Sampled in
Parallel-Beam Projections

A discrete series representation of f based
on an exact continuous representation of f via
the inverse Radon integral transformation is
developed in [12]. There it was shown that if
the sampling requirements of (8) and (9) are met,
then the continunous convolution—backprojection
approack to the inverse Radon transform defined
by

2n
f(x,y) = R_l[p(e.u] = %;—J 5 (6, x cos 6 +

sin ©) de (14a)
where
p(8,a) = p(6,u) * h(w) (14b)
and
'

1 .
h(n) = i j—w Iwul exp (quu) dwu (14¢)
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can be transformed to the equivalent discrete
series expansion

-1 =

p(mAS,nAu)
. sinc ((n/Au) (nAu

~(zx cos m Au + y sin mAu)))
2,..2.1/2

f(x,y) = lla—
r m=0 n=-=

rect((x"+y" ) ""/R) (15a)

where
sinc (x) A sinx/x (15b)
rect(x) A 1 if |x] > 1 (15¢)

0 otherwise
and M , the number of projections (over 2nx
radians) required for recomstructionm, must
satisfy

MM, + RW+1 (15d)

In (15) rect (J x2 + y2 /R) windows the

reconstruction to the original R-disk, and P(m
A®, nAu) is the filtered Radon transform (p(mA6,
nAn) obtained by a discrete convolution which is
equivalent to the "magnitude-omega" filtering of
(14b)). Modified versions of the magnitude-omega
are employed to deblur measurements and smooth
measurement noise [9,11,18]. The reconstruction
achieved by this approach (assuming the space and

frequency support requirements are met) is exact
to within the accepted accuracy of sampling
theory. In practice, the sinc basis

(interpolation) functions are replaced by simpler
basis functions [11]. For example, the algorithm
used for this work first zero-pads and then low
pass filters D(mA®, nAm) in the u-directiom so
that the sampling spacing in the u-direction is
reduced to An/8. This more densely sampled § is
then used in (15a) with simple linear 2-point
connector basis functionms.

If the projection sampling requirement (13)
is satisfied and if there are fewer projections
then required for reconstruction (M < MI), then
all M. projections can (and must) be obtained by
low-pass filtering the M-projection sampled Radon
transform in the 6 direction. The reason M,
projections are required for recomstruction can
be understood by an examination of (15a) which is
recast in a slightly different form below:

T ®
1 ~
£x,5) = 5= ] jw 3, 6, ) 8(u)dude (16)
where
~ A ~ . ;
pd(e,u) = p(0, g+ xcos ®+y sin 0) (17)

represents a distortion of the convolved function
p(8,u) of (14b). The effect of this distortion
is to spread the band region of p(@,u) so that

B wgow) = 0 for Jwg| > W+ (w343 [+ 1)
(18)

By Parseval’s theorem (16) can be rewritten as

@ -]
.1 5
ty) =~ | | Biwgew) slwgam dvy  (19)
(25)° = “-w
S j 5 (0w )dw
en? Jo 4w m
Thus, when interpreted im the wgw_—plane,

reconstruction of the functjon f at the point
(x,y) involves integrating Pd(we,wn) along the
w,~axis [9,12]. Therefore, when concerned with
the rectangularly sampled Radon transform,
attention focuses onto whether or not aliasing of
the w —axis occurs, see Fig _(6). When
reconstructing f to an R-disk, Pd(we,w ) is
bandlimited in the @-direction to My + ?RW+1)
(see (18)). Therefore, it is clear that the
required number of projections needed to avoid
aliasing the data along the w,-axis must satisfy
(15d).

To illustrate, for the case of a circularly
symmetric object (M, = 0) one view (projection)
is sufficient to sample the Radon transform.
However, to adegquately backproject this object
requires (RW +1) views. In this case the missing
views p(0,u) are filled in by duplicates of the
convolved (magnitvude—omega filtered) version of
the one measured projection, With these added
views included, the back-projection algorithm
provides 2 reconstruction that is exaet to within
the accvracy of sampling theory. It is
intuitively pleasing that the number of views
depends on object (or viewing region) size and

the object bandwidth (i.e.,
product.

In summary, for the discrete inverse Radon
transform method of reconstruction, Mr views sare
required for backprojection. These can be
generated by standard signal processing
techniques such as zero padding the measurements
(i.e., filling in the missing views with zeros)
and low pass filtering p(8,,u;) to reduce the
bandwidth to M/2. This converts the original M
projections to M, projections. In the algorithm
used in this paper Mr is set to the mearest power
of 2 greater than 2(RW +1) views, where W = n/Au.
These Mt views are always generated from the M
measured projections. Thus, the algorithm is
universally applicable to objects that meet the

the space-bandwidth

designed space-bandwidth product., If M > ZMb
then all is well and a good reconstrunction
results. If this criterion is not met then the
proposed algorithm is one of several that

reasonably treats the data when undersampled in
projections.

V Reconstruction when Undersampled in Parallel-
beam Projections

When imaging an arbitrary slice function
whose Radon transform bandregion is shown in Fig.
(4), undersampling in the number of views leads
to aliasing as shown in Fig. (7). A more
detailed discussion including other (e.g. fan
beam) sampling geometries is available in
references [8,12].

The reconstruction described in the previous

section corresponds to filtering away all
information for Iwel > M/2 see Fig (8a).
Alternative approaches would include the anti-
aliasing filter shown in Fig. (8b). This filter

rejects all aliased information without regard to
relative amounts of aliased to oponaliased
information. This results in a reconstruction
with no aliasing artifacts., The price paid for
the rejection of these artifacts is a loss of
resolution. In fact, a variable resolution
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reconstruction is obtained with twice the
resolution at the center as at the edge of the R-
disk reconstruction [8,9,11,19]. Another
approach is one which retains all the original

information and accepts the aliasing. V¥hen
reconstructing only within the R-disk, this
filter passband is shown in Fig. (8c). This type

of filtering is aotomatically invoked through the
inversion process. Hemce, this result is the
same as merely processing the available views in
the convolution—backprojection algorithm. In omne
sense the filter of Fig. (8a) represents a
compromise between the extremes of Fig (8b and

8¢c).

Another approach to reconstruction when
undersampled in views involves a minimum variance
filter that weights the available frequency
information by the "signal to signal-plus—noise”
ratio, where the aliasing is considered to
represent noise. This approach has been pursued
in [11] where a generally applicable minimom
variance filter was designed based on a spectral
density model which uniformly weights all spatial
components of an image over an R-disk. In the
absence of a priori spectral density information,
this filter «c¢an be wmsed. It has ©been
demonstrated by experiment that this filter (Fig.
8d) produces optimum SNR reconstructions.
Obviously, endless variations are possible and
optimal designs require a priori information
regarding the object distribution and spectral
properties [11,15]. ©For the general imaging
problem (where f(x,y) is arbitrary) the filters
described here are. practical and of interest in
actual imaging situvations. ¥e believe, the
viewpoint outlined here and detailed in [9,11]
provides a point of view and insight =not
previously available in tomographic problems and
gives the researcher an approach to the imaging
problem that permits specialized processing
algorithms to be conceived.

VI. Experimental Results and Discussion

An imaging system based on 39 samples per
projection and 64 projections (128 over 2n
radians) is employed throughout this section.
This system is nominally designed to handle
objects scaled to fill the circular viewing
region with &8 space—bandwidth prodmct 2RW = 38=x.

Reconstruction is accomplished as described
in [11]}. This requires interpolation of p(6 ,un)
in the u-direction for each of 128 views and
evalvation of the sum over © as defined in (15).
Since the series representation (15) permits
f(x,y) to be reconstructed continuously over the
R-disk, the slice function is recomstructed on a
128x128 grid.

To illustrate the  results obtained in
section V, the Fresnel pattern (defined by f(x,y)
= cos (k{(x*+y*)) is reconstructed to test the
imaging system. This pattern has a spectrum
F(wx. w_) that is essentially flat out to a cut-
off frequency defined by the width of the outer
ring, see the Fresnel-zone plate of Fig. (9a).
The reconstruction is shown in Fig (9b). For an

downsampling in © by a factor of eight (leaving 8
views over n radians) a recomstruction using the
convolution-backprojection approach on the
available views is shown in Fig (9¢) and
artifacts are clearly visible. Since 8 views are
more than adequate to represent p(6,u) for this
circolarly symmetric object, these errors are due
to aliasing of the w, axis by the distorted
function (17) that arises during the back-
projection phase of the reconstruction process.
By low pass filtering p(6j ., u,) in the wy
direction, the missing (zero—padded) views are

filled in avoiding the above aliasing and
resnlting in the recomstrmnction of Fig. (94).

To illustrate the anti-aliasing and minimum
variance filters referred to in section V, the
cross—-section function of Fig. (10a) was
reconstructed from a limited number of
projections. This slice function is comprised of
three impulses convolved with a Gaunssian point
spread function to “effectively” 1limit the
support of F(wx. w.,) to a W-disk where W = n/Au.
A reconstruction with the required number (128
views over 2nx radian) of views duplicates this
function with acceptable error [11].
Reconstructions under a down—sampling in 6 by a

factor of 8 are shown in Figs. (10b—e) for
standard convolntion-backprojection of the
available wviews, apti—aliasing filter, the
minimum variance filter, and also a filter which
simply limits the 8 bandwidth to M/2,
respectively. For these filters the missing

views are replaced by zeros (zero—padded) and the
interpolation resulting from the filtering
operation fills the 128 x 39 grid for p(@,m).
Interpolation in the n—direction is as described
in [11]. As predicted in [9,11], when the anti-
aliasing filter of Fig. (8b) is employed, the
resolution at the center of the viewing regiomn is
twice that at the edge, see Fig. (10c). For the

standard convolution—backprojection
reconstruction, the artifacts (mainly streaks)
are quite dramatic (see Fig. 10¢). This
streaking, due to aliassimg, is essentially

removed in the recomstruction of Fig. (10c).
However, the original object has a substantial
loss of resolution because of the anti-aliasing
filtering operation. Because the anti-aliasing
filter virtually eliminates the aliasing
artifacts the presence of the lower amplitude
impulse is clearly evident in this recomstruction
(in spite of its loss of resolution), whereas it
is more difficult to spot in the other
reconstruction. The reconstractions wusing the
minimum variance filter, and the filter which
simply cuts off at ]we| = M/2 see Figs. (104 and
e), strike a compromise between the
reconstructions of Figs. (10b) and (10c).

VII Conclusion

This paper has focused on the standaxd
tomographic imaging problem of reconstrueting a
function from its rectangularly sampled Radon
transform. The basic philosophy of the approach
presented here first imvolves reconstruction of
the Radon transform to a required set of
projections wusing standard multi-dimensional
signal processing techniques. This is followed

by the convolution/backprojection inversion
algorithm.
¥We have shown that even when the Radon

transform of an image is adequately sampled (in
the Nyquist sense, i.e. (13) is satisfied), the
standard convolution/backprojection
reconstruction algorithm will gemerally lead to
poor reconstruction unless the Radom transform is
first reconstructed to a sufficiently demse set
of projections. A simolation example was
presented to illustrate tbis point. We then went
on to show that when the Radon transform is
undersampled, various reconstruction options are
available. Elind application of the standard
convolution/backprojectior algorithm im  this
situation yields a high (spiform) resolvtion
reconstruction with a large amount of aliasing
artifacts present. On the other extreme is an
anti-aliased reconstruction which has virtually
no aliasing artifacts but has poor (monuniform)
resolution. Other filtering methods which fill
in missing projections seek a compromise between

o
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these extremes by trading off resolution for
aliasing artifacts.

Although we describe in this paper only the
convolution/backprojection inversion algorithm
and modified versions of it, elsewhere [12] we
have compared this reconstroction approach with a
Hilbert—space approximation approach. The latter
encompasses the approach using mnatural pixzels
taken by Buonocore, Brady, and Macovski[20], and
the approach using a degrees of freedom analysis
taken by McCaughey and Andrews [21]. We found
that this alternate approach, applied to the
rectangularly sampled Radon transform achieves
reconstructions which lie between those of the
anti-aliased and the blind
convolution/backprojection filters of Fig. 8b and
8c. While the convolution/backprojection
approach and the Hilbert-space approximation
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A.G, Lindgren and P.A. Rattey
Reconstruction Tomographique avec un Nombre Limite de Projections
Tomographic Image Reconstruction from a Limited Number of Projections
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Fig. 5.
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Support of rectaﬁgular]y sampled Radon transform {whose band region is shown in Fig. 4 (d);

and

Wy

its Fourier transform.
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Fig.

Effect of distortion on bandregion of the |w |-filtered Radon
transform (a) Bandregion of rectangular—samp?ed p(6,u). Re-
plication of baseband spectrum in the wg-direction is caused by
B-sampling. Sampling effects in the u-direction are not shown

here. (b) Bandregion of the distorted function pq(6,u) =

p (0,u + xcos B+ysin0). In (b), spreading of the bandregion in (a)
occurs; aliasing will not affect reconstruction of f(x,y) so long as
point 2 does not migrate past the w -axis or equivalently point 1
(for which Wg=Mp + Wr + 1(see (18))) does not migrate past the line
Wg=H.
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Fig. 8 Various lowpass filter passbands used in different proceesing algroithms
when undersampled in projections (see Fig. 7)

(a)
(b) .
(c)
(d)

filtering away all information for [wg|> M
rejecting all aliased information 2
retaining all available information
Minimum-variance filter response
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Reconstruction Tomographique avec un Nombre Limite de Projectionms
Tomographic Image Reconstruction from a Limited Number of Projections

Reconstruction of FRESNEL-ZONE PLATE image

a)
b)
c)

ad)

Original Image

Reconstruction of FZP in Fig. 9a with full set of projections
Reconstruction of FZP in Fig. 9%9a using 1/8 the full set of
projections and no lowpass filtering in ©-direction to fill
in missing views.

Reconstruction of FZP in 9a as in Fig 9c except with lowpass
filtering in 6-direction to fill in missing views.
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Fig. 10. Original and Reconstruction of Gaussian Pu]se image when
Radon transform is undersampled in projections by a factor
of 8.

(a) oOriginal image, reconstruction using full set of pro-
jections reproduces’ this image exactly.

(b) Standard convolution/backprojection reconstruction,
Note the artifacts due to aliasing.
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{c) Reconstruction using anti-aliasing filter. Note the
rejection of aliasing artifacts and the nonuniform
resolution.

::; KA
PENCTEaREn
{%‘#@:‘:’;ﬁ'{ﬁ" {d) Reconstruction using minimum-variance filter.
i Y“‘“.{{" /;.\‘\"’0,'

\\‘\~ I;I,’

8% 1 "\4%ﬁﬁ

'ﬁéilwy
(

S
il
3
7,
4

e) Reconstruction using 6-lowpass filter with cutoff
at |Wg| = M/ 2.
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