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RESUME

Dans cet article on considére le probléme de la
reconstruction des images tomographiques aideés par
1'ordinateur (apellé CAT) par la méthode directe de
Fourier (apellé DFM) a partir de donndes incomplétes
de la vue. On utilise la méthode de projection sur
les ensembles convexes (apellé POCS) pour rétablir les
données absentes de la vue. POCS est une technigue
récurrente du rétablissement de 1'image qui trouve une
solution consistente avec les données mesurées et les
constraintes connues & priori dans les domaines de
Fourier et de 1l'esvace.

On concoit et applique un algorithme (PRDF) qui
interpole/extrapole l'information absente de la
domaine de Fourier par POCS et reconstruit une image
par DFM. Une vue en coupe du thorax humain est
rétablie et reconstruite par les données de la
projection simuleé des rayons X. ILes rétablissements
obtenus en utilisant POCS sont comparés avec la
méthode d'extrapglation classique de Gerchberg-Papoulis
et démonstrés a etre superieurs. Les applications de
PRDF aux tomographies résonnantes magnétiques
nucléaires (appellé NMR) sont aussi discutées.

SUMMARY

In this paper we consider the problem of recon-
structing computer aided tomography (CAT) imagery by
the direct Fourier method (DFM) when not all view
data is available. To restore the missing view data
we use the method of projections onto convex sets
(POCS) . POCS is a recursive image restoration tech-
nigue that finds a solution consistent with the meas-
ured data and a priori known constraints in both the
space and Fourier domain.

We design and apply an algorithm (PRDF) which
interpolates/extrapolates the missing Fourier domain
information by POCS and reconstructs an image by
Fourier inversion. A human thorax cross-section is
restored and reconstructed from simulated X-ray pro-
jection data. The restorations using POCS are com-—
pared with the classical Gerchberg-Papoulis extrapo-
lation method and shown to be superior. Applications
of PRDF to nuclear magnetic resonance tomography are
discussed. '
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I. INTRODUCTION
In this paper we combine the direct Fourier meth-
od (DFM) of reconstructing from projections with an
iterative restoration algorithm called the method of
projections+ onto convex sets (POCS) to reconstruct
good quality imagery from incomplete projection (view)
data. The method of POCS was discussed in [1] and [2]
as applied to image restoration when only partial fre-
quency or space domain data was avallable to recon-
struct an arbitrary image. Tuy [3] used POCS to re-~
store missing projection data in connection with re-
construction via filtered convolution back-projection
(FCBP). However, since constraints are generally ap-
plied to the image or its spectrum (but not its pro-
jections) we are motivated to study the reconstruction

" from incomplete projection data problem from a differ-
ent viewpoint. Why DFM/POCS? With regard to the
method of restoration POCS offers two noteworthy ad-
vantages: (i) it enables any number of g priori con-
vex-type constraints to be incorporated in the algoxr-
ithm; and (ii) it guarantees convergence: weak in
general, strong in practice. Having chosen POCS as
the restoration algorithm, the logical reconstruction
method is the direct Fourier method (DFM). Not only
is DFM fast as a reconstruction algorithm but because
it involves transformations between space and Fourier
domains, it enables space-domain and Fourier-domain
constraints to be applied in their respective spaces
directly. Finally because exact interpolation formu-
las exist, DFM-reconstructed image can be made of same
quality as by the method of filtered convolution back
projection (FCBP).
IXI. REVIEW OF POCS

The function to be restored, f(x,y) is assumed to

be an element of a Hilbert space H which is the space

of functions satisfying

dxdy < o

ey | W
a

with inner product

£, & feoy) o tuy) axdy
Q

and induced norm

|1€]] & (3)

The basic idea of POCS is as follows: Every known
property of the unknown feH will restrict f to lie in
a closed convex set C in H. Thus, for m known prop-
erties there are m closed convex sets C i=l,2,...,m
and £eC_ 42 ¢
i=1 i
point of C given the sets C., and projection opera-
tors P, projectlng onto C, } =1,2,...,m. The conver-
gence properties of the sequence {£ } generated by
the recursion relation x

(£,9et) (2)

[(£,F) ]1/2

Then the problem is to find a

£ =P P ... P_£f H

k+1  Tmom-l 1% k=0,1,...

or more generally by

f =
k+1 Tme—l Tt

with T é I+A, (P —I), 0< A, < 2,are based on fundamen-
tal thdorems givan by Opia [4] and Gubin et. al. [5].
The A,'s, i=1,...,m are relaxation parameters and can
be uséd to accelerate the rate of convergence of the
algorithm. However, the A's that are effective in the
absence of noise will often be ineffective when noise
is present [6}. Thus a single set of A's is not

T £ ;

15 k=0,1,...

(5)

1t Projections in the mathemétical sense.

effective at all signal-to-noise ratios.

The following

sets and their associated projection operators are

among the ones used in Refs.

[2]1 and [6] and they will

be used here.
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III.

theorem [8].
image is desired (e.g.
absorptivity).

I

: The set of all functions in H that vanish a‘e
outisde a prescribed region Scfi. Given an ar-
bitrary £ in H its projection onto C is real-
ized by

£, (x,y)ES
(6}

0, (x,7)¢8

: The set of all functions in Hf whose Fourier
transforms assume a prescribed value G over a
closed region L in the u-v Fourier plane. The
projection of an arbitrary £ in H is realized
by

G(u,v), (u,v)el
(N

F(u,v), (u,v)gl

where F(u,v)=F{f(x,y)] and F is the Fourier
transform operator. In the case of incomplete
view data G(u,v) is known in a data cone with
subtended angle of less than 180 degrees.

The set of all real valued nonnegative func-
tions in H that satisfy the energy constraint

2
axdy < £ 2 o (8)
The projection of an arbitrary feH onto C3 is

realized by

£ <0
Q, 1
+ “+
E < E
fl , 1 (9)
E + +
>
fl B El E
. + .
where f_ is the real part of £, £ is the
rectified portion of fl, and El+ is the
energy in fl+; i.e.,
+ 2
frE, )7 axdy. (10)
1
Q
4t The set of all real valued functions in H
whose amplitudes must lie in a prescribed
closed interval [a,b]; a0, b>0, a<b. The
projection of an arbitrary feH onto C
realized by the following rule
a, f{x,y) < a
£(x,y), a=< f£(x,y) £b (11)
b, f(x,v) > b
Operatoxrs P_,P_,P_ and P  were used in Egs.
(4) and (5) in"restoring an image from its
noiseless partial frequency spectrum [2].
They were also used together with a noise
smoothing operator to restore images from
noisy partial frequency spectrum [6]. 1In all

cases the method of POCS outperformed the
Gerchberg-Papoulis (G-P) algorithm [7].
(DFM)

REVIEW OF THE DIRECT FOURIER METHOD OoF

RECONSTRUCTION FROM PROJECTIONS

The DFM is based on the central slice projection
Let u(x,y) represent a function whose
inACAT, u(x,y) is the X-ray
Let u¢(x,y) represent the same dis-
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tribution in a coordinate system §—§ rotated from x-y
by an angle ¢. The projection.data at view angle ¢
is defined as

~ A A A ~
= ,y) 4 12}
.p¢(x) i u¢(x y) @y (

where L is the beam path. The central slice projec-
tion theorem states that

P¢(O) = M(p,$) P20  O<¢<2m (13a)
where N
2, @) = 7 p¢(§)e‘2"°xd§ (13b)

and M{p,¢) denotes the 2-D Fourier transform of the
cross—section distribuEion U(x,y) in polar coordin-
ates. In practice p, (x) is the data actually obtained
at the location of dgtectors {x.}. 1In place of

Eg. (13b) the discrete Fourier transform is used to
obtain P, (p) at the discrete set of spatial frequen-
cies {p ﬁ Since the view angles are also a discrete
set M(d%¢) is known at points on a polar grid {p ,¢ T,
n=1,2,...,N; k=1,2,...,2K+2 where N is the numbe%

of detectors, K is the highest harmonic in the angu-

) 2T . .
larly band-limited image and ¢k = Tkeo k. We immedi-

ately see that if we could compute the 2-D inverse
Fourier transform of M(p ,¢ ) we would obtain the de-
sired image.

At this point, direct Fourier methods reguire
interpolating M(p_,¢.) to M _(u ,v )} where M (+) is
the Fourier trans?orﬁ of u(g,y ofi a cartesfan raster.
The interpolation from a polar to Cartesian raster is
required in order to use the FFT routine. However,
inexact interpolation is a major source of error in
reconstruction by direct Fourier methods even when the
interpolation errors are not large [9].

Recently an exact interpolation method was dis-
cussed [8, 10, 11] which, in direct comparisons, pro-
duced images equal or superior in quality to convolu-
tion back-projection methods. The method is based on
the exact polar sampling theorem

o0
M(D,¢)=n_2_m Z M(z_AK+1)Slnc[2A(p_ )]G(¢-K+1 (14a)
where 2A is the diameter that bounds the object in
space, K is the highest -angular frequency in the per-
iodic function M(p,¢) and 0(¢) is an azimuthal inter-
plating function given by

A sinl(v/2)¢]
90) = T oinl(L/2) 6] (14p)

In practice a truncated interpolation involving a
finite number of cardinal functions, truncated cardin-
al function expansion (TCFE), is used. Thus Eg. (1l4a)
.is replaced by

A n +L k +L
Py P ¢ ¢ Tk
M(p,¢) = - Z_ z M( ’
n np Lp ¢ ¢ 2A K+1
. n _ Tk
sinc (2A{p- ——ZA))G(d) K+l) (15)

where [2Ap]én and [(K+l)¢/ﬂ]—k¢, are the nearest
neighbors to the point about which the expansion is
done. 1In practice, image quality is improved when
the truncation is tapered. The taper normally used
is the Cartesian product of two identical one-dimen-
sional triangular windows, w(n), of the form

w(n) = max(l-[n|/M, 0) ; n=0,%1,%2,... (16)

M= is the abrupt truncation case. It is possible to
adjust the relative proportions of radial and azimuthal
interpolation by adjusting the quantities L. and L
respectively. In this paper we use TCFE ingerpolaglon
with tapering (M=5).

After interpolating the 2-D Fourier spectrum from
a polar to a Cartesian raster, a 2-D inverse FFT is
computed to obtain the desired image. The direct
Fourier method is illustrated in Figure 1.

Full scan projection data
I

Obtain Fourier data over central |
slices corresponding to each view |
|
|

angle by computing 1D FFT of

the projection data for that view

and thus form the Fourier spectrumi
over a polar raster.

1

Interpolate the spectrum over a |
| Cartesian raster 1

Compute inverse 2D FFT to obtain |
the desired image |

|

|
Reconstructed
image

Figure 1. Direct Fourier inversion method (DFM)
Iv. PRDF ALGORITHM

If projection data is available over a limited an-
gular range, then the image Fourier transform M (0,¢)
can be interpolated over a Cartesian grid within this
angular range. The pixels remaining outside this angu-—
lar range are set to zero as a first approximation.

The missing frequency information is then restored by
POCS and the desired image is obtained by inverse
transforming. The complete algorithm is called PRDF
and illustrated in Figure 2.

- Angularly limited
projection data

I

| Obtain Fourier data over central |
| slices corresponding to each view |
| available by computing 1D FET of |
| the projection data for that view |
| and thus form the Fourier spectrumi
{ in a data cone over a polar raster|

|
|

| Interpolate the data cone info {
| over a Cartesian raster ]

!

Restore the missing frequency |
spectrum info by POCS

Compute inverse 2D FFT to obtain |
| the desired image |

Reconstructed
image

Figure 2. PRDF algorithm for reconstructing from
angularly limited view data.

V. RECONSTRUCTING A THORAX PHANTOM FROM ANGULARLY-
LIMITED X-RAY PROJECTION DATA

The simulated parallel beam projection data as-
sumes an X-ray energy of 70 Kev, 128 detectors which
are spaced apart by 0.3 cm. and 360 views over 360 de~
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grees. The interpolated transform with L =3, L,=1,
i.e., 21 interpolation points and resultihg recbn-
struction of the thorax phantom from complete view
data is shown in Figure 3.

Reconstruction by PRDF from angularly limited
projection data is attempted for the following three
cases; projection data is limited to the view range of
i) [-80°,80°1, ii) [-67°,67°], iii) [-45°,45°] (pro-
jection data missing about vertical axis). The form-
ula of Eq. (15) with L =3, L =1 is used to interpo-
late ﬁ(p,¢) from polarpto Carftesian points. The
Fourier transform for full-view data and the above
three cases is shown after interpolation in Figure 4.

Figure 3. DFM reconstruction and interpolated

spectrum.

Figure 4. Interpolated frequency spectrum: Clock-
wise from upper left: full view projection
data, view limited to [-45°,45°], view
limited to [-80°,80°], view limited to
[-67°,67°].

Results

The basis for comparing results was the percent
error e, at the k'th iteration defined by

e & 100 - L:-Ifj:c—lf—}]{—,-l‘

A .
where f£=f(x,y) is the full scan (360 degrees) recon-
structed image.

(17)

A summary of the a priori known facts and assump-
tions made about the image are given in Table I.
Table II furnishes a summary of the experimental

results.

Table I. Summary of a priori assumed constraints

a priori constraints Actual

(1) Image support confined to
rectanguiar region of length
124 pixels and width
103 pixels.

(1) Image support is elliptical
(Figure 3).

(2) Gray levels f satisfy 0sfs0.4 (2) Gray Tevels f satisfy 0sf<0.38
(3) Energy over 128x128 square pixel

(3) Energy over 128x128 square pixel
field cannot exceed p®=284.000 i

field is 282.74

Table II. Summary of significant results
Algorithm Percent Error
Available e e
View Relaxation 0 30
Range Name Description Parameters
(45,457 GP P21>]fk=f,éﬂ x]=xzf1.o , :Z.ggl
UNTRELAXL P4P2P3P‘ k’fk+1 AT-AZ—I.D 52.419 .
Xg=hg=1.0
6P P2P1Fk=fk+] A1=A2=1.0 22.22:
[-67,67] |UNIRELAX P2P3P1fk=fk+1 A=Ay Ag=1.0 45.000 17.8
RELAX TZTSTlfk=fk+l A]=A3=1.9995 16.184
%:LO
GP PZP]fk= e k]=A2=I 0 15.485
[-80,80] [UNIRELAX P2P3P.|fk=fk+l x1=A2—A3=1.0 41.361 12.122
RELAX T2T3T1fk=fk+] A1—?3;I.9995 9.3
A=t

a) Results for When Projection bata Is Limited to
[-45°,45°]

In this case the reconstructed image at the end of
30 iterations is of low visual quality for all algor~
ithms. Still the DFM reconstruction using UNIRELAXL
(i.e. level constraints applied) restoration outper-
forms the DFM reconstruction using GP restoration.
(See Table II)

b) Results for When Projection Data Is Limited to
[-67°,67°]

In this case the three different restoration al-
gorithms GP, UNIRELAX, 'and RELAX are separately com-
bined with DFM reconstruction. The naive solution,
which is merely inverse Fourier transforming the polar
to Cartesian interpolated spectrum having zerces for
the entries corresponding to unavailable angular re-
gion (Figure 4) results in an error of 45 percent. In
Figure 5 the naive solution is compared to reconstruc-
tions using GP, UNIRELAX and RELAX restorations. With
the RELAX restoration an error less than 17 percent is
reached at the end of 30 iterations and as can be seen
from Figure 5 PRDF reconstruction incorporating
UNIRELAX and RELAX restoration outperforms the recon-
struction based on GP restoration.

¢) Results for When Projection Data is Limited to
[-80°,80°]

The naive reconstruction (e =42 percent) and the
reconstructed images at the end of 30 iterations using
RELAX, UNIRELAX and GP restorations are compared in
Figure 6. As before, reconstructions using a poster-—
iori restoration is superior to the naive reconstruc-

tion. The reconstruction by the RELAX restoration
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outperforms the reconstruction performed by the clas- VI. APPLICATIONS IN NUCLEAR MAGNETIC RESONANCE (NMR)

sical GP restoration. The superior performance of TOMOGRAPHY

RELAX is especially evident in the reconstruction of

the elliptical structure (note the obliterations in In general PRDF is suitable for both medical and
the GP case) and the reduced plume-like clouding from non-medical applications of tomographic image recon=-
the tips of bright objects. struction from projections. Moreover it is also well

suited for applications where the frequency spectrum of
the image function is directly measured. Nuclear mag-
netic resonance (NMR) imaging is intrinsically a three-
dimensional imaging modality. However by selective ex-
citation [12] we can achieve tomographic imaging of the
spatial nuclear magnetization distribution of a select-
ed slice [12]. With saturation recovery pulse sequenc-
ing [12], the imaging equation i.e., the relation be-
tween the measured signal S(t), and the eguilibrium
nuclear magnetization distribution M (x,v,z), has the
following form

S(t) =K Jf M_(x,y) expl-iY(G_x+G_y)tldxdy (18)
q ©° X b

where xy
M (x,y) = J R(z) M _(x,vy,2)dz

[} o, o

In Eq. (18) Gx and G_ are the x and v gradient field
components, R(z) 1s the response resulting from
slice selection, Y is the gyromagnetic ratio, K is a
constant, £ and Q are the ‘object supports in the
z directignand in"the selected slice respectively.

However, in practice data is sampled over a polar

crant Tavr Ealed e
\j;._n.d Oy cafing G

A 0 = whero

” x (k)G °°° *k and € 4y =C sin Yk ,,,,,,
¢k " k; k=1,2,...,M. Then Eq. (18) becomes:

Sk(t) =K ff Mo(x,y)- exp[—in(xCos¢k+ySin¢k)t]dxdy ;

Q
Xy
k=1,2,...,M (20)
Figure 5. Reconstructions when projection data is and after sampling S, (t) with interval T=At the re-
limited to [-67°,67°]. Top: naive recon~ ceived signal is related to the nuclear magnetization
struction then clockwise from upper left, by the following imaging equation

GP, RELAX, UNIRELAX and full view data
reconstruction.

A = . " )
Sk sk(nAt) KSS Mo(x,y) expl 1YGn(xCos¢k+y51n¢k)At]dxdy

Y/
Xy
k-1,2,...,.0 , n=1,2,...,8N (21)

But S is the 2-D Fourier transform of the nuclear
magnetlzation M (x,y) sampled at (YGnAtCosdk,

YGnAtSing ) or 8quivalently, at ( Cos¢ , T Sln¢ ),
x=1,2,...5M; n=1,2,...,N where r 2%anAf. O

Therefore the Fouriexr spectrum of the image distribu-
tion (nuclear magnetization distributien of the select-
ed slice) can be directly measured over a polar grid

in the frequency domain. If complete spectrum infor-
mation is available the direct Fourier inversion method
(DFM) can be used to reconstruct the nuclear magnetiza-
tion distribution. In case of limited-view measure-
ments the missing spectrum can be restored via POCS
prior to Fourier inversion. This restoration followed
by Fourier inversion is indeed our PRDF reconstruction
algorithm. Limited-view measurements are motivated by
the desire for reduction of data collection time.

VII. CONCLUSIONS AND SUMMARY

In this paper we presented and applied a recon-
struction algorithm (PRDF) that is synthesized from a
recent restoration algorithm called projections onto
convex sets (POCS) and from a direct Fourier inversion
method (DFM) based on an exact polar to Cartesian in-

Figure 6. Reconstructions when projection data is terpolation formula. The PRDF algorithm is capable of
limited to [-80°,80°]; Top: naive recon- performing reconstruction from angularly limited pro-
struction; then clockwise from upper left: jection data. If the projection data is collected via
GP, RELAX, UNIRELAX and full view data fan beam geometry, rebinning can be applied prior to

reconstruction. reconstruction to perform the conversion to equivalent
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parallel beam projection data.

We also discussed the possibility of applying the
PRDF algorithm to NMR tomography. Unlike X-ray tomog-
raphy, NMR tomography yields the frequency spectrum
of the image distribution directly over a polar grid
in the frequency domain. This fact suggests that NMR
imaging is a potential candidate for the interpolation
and restoration phase of the PRDF algorithm.
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