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RESUME SUMMARY

Un modéle nouveau de texture est A new texture model is »ronosed, based
proposé, fondé sur 1'idde d'un processus on the notion of a vector imnulse process
vectoriel des impulses gqui pousse un opér- driving a vector filter, whose comnonents
ateur vectorel linéaire, duquel les compos- are chosen to renresent optimally disjoint
ants représentent régions distincts du regions of the spatial frecuency domain.
domaine de fréguence spatiale. La méthode a The method is shown to have great flexibility
flexibilité et a de la ressamblance avec le and its relation to the wvisual system is

systéme visuel. discussed.
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1. Introduction

The problem of texture description is
one that has received an enormous amount of
attention in the literature (e.g. refs. 1-7)
and yet remains a topic of debate. The
debate centres around both what precisely is
meant by 'texture' and how such regions
should be generated and analysed.

Of the methods proposed so far, statist~
ical techniques predominate. The most
common stochastic models of texture are
either linear, for example using auto-
regressive (AR) or auto-regressive-moving-
average (ARMA) models, [4], [5], or non-
linear, among which Markovian models tend to
be favoured (see e.g. [6], [7]). These are
natural choices, offering a range of model
complexities, from simple 1l-d linear causal
models to 2-d models with control of the
n-tuple probability densities. While the
more complex, nonlinear models offer gener-
ality, it is by no means clear that such
generality is necessary, in view of the
findings of Gagalowicz and others, [1], [2],
which suggest that 2nd order spatial corr-
elation and first order statistics may be
sufficient, at least as far as the human
visual system is concerned.

The common element in all of these
models is of a system driven by a suitable
noise process. This is summarised in the
general model of Faugeras et al [2]. While
the model described here is similar in general
form to that of [2], it has some important
differences from the implementations desc-
ribed by those authors. The principal diff-
erences are in the choice of driving process
and the choice of filters. Rather than use
a continuous process, an impulse process is
used. This gives a greater range of image
types, ranging from isolated features and
periodic patterns to textures indistinguish-
able from those produced by a continuous
process. Rather than use a single filter
with a set of variable parameters, such as in
an ARMA model, a set of filters is used, each
filter being driven by a separate noise
process. The filters are selected to give a
maximally efficient division of the frequency
domain for a given spatial window. The adv-
antage of this method is its flexibility:
the filters can be so chosen as to synthesise
any desired microstructure, ranging from
functions which bear a strong similarity to
thoge found in the mammalian visual cortex
[8], [9], to pure sinusoids. The filters
are based on solution of one of the eigen-
value problems associated with the uncert-
ainty principle [10], [11]. similar filters
have found application in areas as diverse
as spectrum estimation [12] and image feature
extraction [13], [11]. They thus represent a
variation of the appreocach to image processing
first proposed by Granlund, based on operators
which are local both spatially and in the
frequency domain [14] and which form the
basis of the GOP image processor [15], [16].
Furthermore, corresponding to the synthesis
method is one of analysis, which consists of
estimating the local energy for each filter
in the set. The method is shown to be both
general and effective. A description of the

theoretical basis of the method is followed
by a discussion of some preliminary experim-
ental results and the relation of the methods
employed to early visual processing.

2. A Model of Texture

The general model of texture proposed
here is illustrated in Fig.l. A vector
impulse process s(x,y,u,v) is generated
according to some specified probability law.
For example, a spatially stationary process
can be defined by

prob{s (x-x; ,y-y1,u1,v1) = 1} (1)
= Prob{s{(x,y,u;,vi) = 1}
= 1 - Probi{s(x,y,u;,v1) = 0O}

In other words the process s(x,y,u,v) is
defined as a binary process on a 4-dimensional
discrete lattice, two of whose dimensions
represent the spatial co-ordinates x and y.

As another illustrative example, a 1l-d spat-
ially periodic process can be defined with
period X by

Prob{s (x-kX,y,u1,v1)=s(x,y,u,v)} =1 ¥k (2)

Thus, while s(x,y,u,v) will typically be
a stationary process with independent incre-
ments, a large class of processes can be
generated in this way.

The vector process s(x,y,u,v) is spat-
ially convolved with a 4-dimensional, shift-
invariant operator h(x,y,u,v), the outputs
being summed to produce the texture field
£(x,y)

fix,y) =L % z z (3)
uelU veV xeX ye¥
.S(X‘XIIY—YIIUIV)

h(xllYIIuIV)

where U,V,X,¥ are the regions of support of
the operator h(x,y,u,v).

It follows immediately from the central
lirit theorem [17] that if s(x,y,u,v) is a
process which is independent in the four
dimensions

Prob{s(xl,yl,u1,V1)]s(XEX;X#XIrYEY:Y¥Y1r
ugUiufu, ,veV;vEvy) ) = Pr{s(X1,y1,u1:V}Z;

then the probability density of f(x,y) becomes
Gaussian as Y,V,X and Y tend to infinity.

Thus one of the commonest texture processes,
the Gaussian (fl}—[S]), may also be obtained
as a limiting case of the akove model.

Having defined a 4~d imensional driving
process, it is now necessary to consider a
suitable class of linear filters. While many
choices are possible, one has special prop-
erties which commend its use. The filters
are based on the solution of the eigenvalue
problem (5)

* = (5)
T_F TFY = A

where F is the N2 dimensional 2-d discrete
Fourier transform operator
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-lexp{_JZn(km+ln)}

N2

£ = N

k1lmn (6)

and Ty and T_. are diagonal truncation oper-
ators® defindd by

tsklmn = kasln (k,l)aQs (7)
=0 (k,1)eq
s
and
tfklmn = kaGln (k,l)eQf (8)
=0 (k,l)eQf

where Q_ and Q. define regions of arbitrary
shape in the sgatial and frequency domains
respectively. Typically, either Q_ or Q. or
both are defined in cartesian sepa%able Eerms
[¥1. In the case where both are cartesian
separable, the eigenvalue problem (5) becomes
separable and the eigenvectors are the
Kronecker product of the corresponding l-d
eigenvectors. The solutions of (5) and their
elegant symmetry pro?erties have been dis-
cussed at length in [11], where a more
complete list of references,_ including the
original work of Slepian [10] can be found.
For the present purposes, it suffices tc note
that the following are true:

2.1 The eigenvectors Yy will be real provided
Qf is symmetrical.

22 The eigenvalues A satisfy 0 < A < 1 and
represent the fraction of energy rem-
aining after the spatially limited,
eigenvector ¥ is bandlimited (by F T_F)
and truncated (by T_.). The eigenvector
P° corresponding to~the largest eigen-
value, Ay, therefore has the largest
simultaneous concentration of energy
inside the two regions Q_, Qf of any
function. S

2.3 The related problem (9) below can be
used to define pairs of bandpass
filters which are in guadrature [11]:

FT_F*T ¢ = PN (9)

where

¢ = Fy (10)

The two extreme cases of Egq. (5) are of
some interest because they exhibit the flex-
ibility of the method. Consider first the
case of maximal concentration in the freqg-
uency domain Qf = (k;,1,) then with

Te = Symdinduk, %11,
(11)
T =1
S
it follows that
UL N texp - j2’Mk§m+11n&,Ao =1 (12)

N

and 3 = 0, 1 < k < N°. Thus at one extreme
the eigenvectors are pure complex exponent-
ials. Similarly, if the roles of T  and T¢
are reversed

Te = Simbindxk, %11,
_ (13)
Te = I
then
0 — -
Pl T Sk, %11, ‘o =1 (14)

and Ay = 0, 1 < k < NZ, yielding an eigen-
vector of maximal spatial concentration.
Obviously, making intermediate choices of
operator implies an eigenvector of intermed-
iate concentration in the two domains. None-
theless, the eigenvector ¥° always represents
the most effective trade-off between the two
domains, a most desirable feature, both theor-
etically and in the light of recent physiol-
ogical work (c.f. Section 4 below).

Having completed this summary of the
properties of the functions y%,it remains to
incorporate them in the texture model. This
is done by assigning to each lattice point
(u,v) a distinct region of the frequency
domain Qf(u,v) such that

Qf(u,v)nﬂf(ul,vl) = ¢ u=u! v=v! (15)

In this way a mapping is established between
disjoint regions of the frequency domain and
the filter functions which best represent
them within a given spatial window g_, which
is common to all the functions in theé set.
Thus the filters h(x,y,u,v) are simply the
Oth eigenvectors P° of the eigenvalue
problem (5) defined by Qg and Qf(u,v)

hixgum =1WXYUMV) (16)
where
TSFTf(u,v)F*¢°(u,V) = Ao (u, v’ (u,v) (17)

Recalling the limiting cases of Egs. (11l) to
(14), it can be seen that choosing T_(u,v)=I
for some (UM, a single impulse results
which can reproduce any component of the
original impulse process, while if

- 2
Tf(u,v) = kaslnskuslv Osu, v<N

Ts = T

(18)

then the filters become complex exponentials
and the synthesis method becomes pure
spectral synthesis [3].

Thus the texture model is both powerful
and general, covering the full range of
images normally classed as 'tegture'.
Furthermore, given a texture image to be
described, simple filtering operations with
the same set of filters yield estimates of
the relative energy in each region of the
frequency domain. Specifically, a complex
filterwhose components are in quadrature can
be defined by use of the Eg. (9)

FT_F*T(u,v)¢° (u,v) = Ao (u,v) 9% (u,v) (19)

where the truncation operator Tf(UAb contains
only 'positive' frequencies, e,g.

Tf(u,v) =0 u<0 (20)
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The envelope of the spatial convolution of
% (u,v) with the image then provides an est-
imate of the instantaneous energy within the
region Qf(u,v), e(x,vy,u,v)
e(x,y,u,v) = [£(x,¥)*¢°(x,y,u,v)|® (21)
The function e(x,y,u,v) thus provides a
Mmeasure of the relative distribution among
the regions flg(u,v) of the frequency domain
and may tpus He used as a texture feature
vector [1]. Furthermore, the disjointness
of the regions makes the estimates for diff-
erent (u,v) practically uncorrelated,
provided a suitable spatial window size is
Cchosen. The method therefore provides an
Ooptimal compromise between descriptions based
solely on localised features, like_ edges, and

spectral or correlation methods [3].
3. Experiments
In order to test the ideas, a set of

test images have been generated using a
thresholded white Gaussian noise process to
produce the impulse process which was input
to the set of filters shown in Fig. 2. It
1s clear from these responses that polar
separable forms of the truncation operators
have been used, rather than a cartesian sep-
arable form. The reasons for this are
related to known properties of mammalian
visual cortical newons (c.f. next section)
and are also discussed in ;16,. Figures 3
and 4 show a couple of textures generated
with these methods, illustrating the range
of texture types that can be produced.
Figure 5 shows the effect of the analysis
step on the texture of Fig. 4. The near
ormhogonality of the filters makes the dis-
tinction between the regions both easy to
see and sufficient for classification.

4, Discussion: Relation to Recent Findings

on the Visual Cortex

It has been known for many years that
Cells in the mammalian visual cortex are
3eénsitive to features of different orient-
ations. More recently, however, there had
been a considerable controversy over the
exact nature of these 'feature detectors'or
even whether they are feature detectors at
all. The debate centred around the band-
width of the cells: a high bandwidth
(> 1.5 octave) and spatial concentration
being seen as evidence for feature detection,
while a low bandwidth was used as support
for a Parier analysis' model of vision.
Recent physiological work suggests that the
truth lies somewhere in between, a finding
which is supported by measured receptive
field profiles which bear close resemblance
to those shown in Fig. 4 8., 9.. Moreover,
the 4-dimensional arrangement of the filters
used here exhibits some common features with
the 'hypercolumn' arrangement found in the
mammalian cortex .18.. While a close corr-
espondence between the 'filters' used in a
general texture synthesis/analysis scheme
and those used by the visual system is not
essential, it is nonetheless useful to
employ a system which allows for that poss-—
ibility. A fuller discussion of these ideas

can be found in [18].
5. Conclusions

A general model of texture has been
presented which gives a great degree of flex-
ibility in the range of textures it can
describe and offers the potential for employ-
ing methods which have at least a superficial
resemblance to those employed by the visual
system.

While the results obtained so far are of
a preliminary nature, they have been suffic-
iently encouraging to warrant further work.
In particular, the possibility of emvloying
these methods in a hierarchical fashion
appears to offer real conceptual and comput-
ational advantages.
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u S(XIYIuIV) h(XIYIuIV)
y + £(x,y)
v

Fig. 1: CGCeneral model of texture synthesis
Fig. 2: Spatial responses of one of direct-

ional filters used in producing Figs. 3-5

IMABINARY

Fig. 3: Textures generated with low imnulse
frequency:
a) original impulse Zield b) circularly symm-
etric l.». filter c¢) directional l.p. filter
d) sum of b). and c¢)

Fig. 4: Textures generated with hich impulse
frecuency:
a) original impulse field b)

circularly symm-
etric l.p. filter c) d)

directional b.on.

filters

Fig. 5: Estimate of eneray in one 8f 4 °
direcsions mage on textures at a) O b) 45
c) 907 d) 135

to estimating £filter direction



