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RESUME

-~

Lors d'une estimation spectrale a 1l'aide d'un
modéle, il est généralement reconnu que les modéles
de type ARMA (autoregressive-moving average) donnent
des estimations ayant une plus grande résolution que
les modeles autoregressifs seuls [1,2]. Cependant,
il manque pour 1'instant une méthode acceptable pour
déterminer 1'ordre d'un processus de type ARMA &
partir de sa sortie.

Le critére 4'information de Akaike [1] peut
dtre utilisé pour déterminer 1'ordre de la partie AR
du processus , cependant le probléme demeure pour
trouver l'ordre de la partie MA. Les quelques rares
techniques qui existent pour évaluer cet ordre sont
basées sur des méthodes empiriques d'essais et corr-
ections.

Ce paper présente une nouvelle méthode qui
détermine 1'ordre d'un processus ARMA en une seule
opération. Il s'agit d'une modification de la méthode
de Chow [6] gqui fait usage de la procedure d'ortho-
normalisation de Gram-Schmidt pour déterminer la
dépendance linéaire des colonnes dans une matrice
d'autocorrélation. Le développement théorique est
vérifié par des simulations qui donnent &galement des
résultats sur la détermination d'ordres de processus
seulement a partir de séquences de sortie.

SUMMARY

It is generally recognized that when performing
spectral estimation via the modelling approach, auto-
regressive-moving average (ARMA) models can provide
estimates of higher resolution than autogressive mod-
els alone [1,2}. However, there is lacking an accept-
able method for determining the orders of an ARMA
process from its output.

The Akaike information criterion [1] can be used
to find the order for the AR part, but the problem of
determining the MA order remains. Of the very few
order determination techniques in existence, most are
trial and error based.

This paper presents a new method that determines
the ARMA orders in one pass. It is a modification of
the method of Chow [6] and uses the Gram-Schmidt
orthonormalization procedure to determine linear dep-
endency of the columns in an autocorrelation array.
The theoretical development is verified by simulation,
which also includes results on order determination
from output seqguences alone.
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I. INTRODUCTION

In applying the modelling approach to spectral
estimation and in system identification, where a sequence

is to be represented as the output of an autoregressive-

moving average (ARMA) process, the determination of the
propexr ARMA orders and the estimation of the ARMA co-
‘efficients are presently two important research areas.
Very little results are available on the determination
of the orders of an ARMA process [1,2]. The Akaike in-
formation criterion [1l] can be used to find the AR
order, but the problem of determining the MA orders
remains. Some ARMA spectral estimation techniques
avoid the MA part of the modelling approach completely
by taking the Fourier transform of the residuals [3],
the result of which is the MA spectrum. Nevertheless,
information on the complete model is needed in other
ARMA spectral estimators [1,2], as well as in system
identification.

Two methods in the literature on order determin-
ation are trial and error based [4,5], but neither of
them provides a constructive algorithm. Chow in [6,7]
did give procedures to establish the ARMA orders. The
AR order is first determined by testing for singularity
of a correlation matrix, then the AR coefficients are
estimated, and finally the MA order is obtained from
the relationship expected of the correlation of an
ARMA process.

This paper presents a new ARMA order determina-
tion method that is non-iterative, giving the answer in
one pass without having to calculate the AR coeffici-
ents. The principle used in finding the AR order is
similar to Chow's [7], but the implementation is dif-
ferent and simpler. Instead of calculating the deter-
minant of a correlation matrix to test for singularity,
the linear dependency of an array of correlation func-
tions are checked via the Gram-Schmidt ortho-normaliz-
ation procedure. The position at which the first lin-
ear dependency occurs gives the AR order. Then the
check continues until an independent column appears
and the MA order is computed from a simple equation.
The whole process is systematic and eliminates the
estimation of the AR coefficients (required in Chow
[71), which adds uncertainties to the determination of
the MA order. The procedures are developed in Section
II, followed by the simulation results in Section III.
Using the whiteness of the residuals and the mean
squared errors as the performance criteria, comparisons
are made of the estimation results obtained from models
with estimated and actual ARMA orders. In many instan-
ces, especially when the number of samples is small

(say 100), the estimated ARMA orders are superior. The
conclusions are in Section IV.
II. ARMA ORDER DETERMINATION
Given a finite sequence {x,}, n=0,1,...,N-1, as
the output of an ARMA process
P q
X = % a X + X b, w . (1)
n - -
k=1 k "n-k 1=0 i n-i

where {w } is a band-limited white noise (BLWN) sequence

[5]. The problem is to determine, from the sequence
{Xn} only, the orders (p,q) of the ARMA process.
Let
R () A Blw o ox ] (2)
R ) A Elx ox}=elxx o} (3

be the cross and auto-correlations of {w_} and {xn} and
{xn}, respectively. Then it follows immediately from

(1) that P " q
RXX(SL) = kil a, RXX(Z—}() + iiobi wa(Q—l) (4)
Further, since
R (4 =0 for 3>0 (5)

WX

which is a consequence of {wn} being BLWN and xp is a
function only of wy and the past values wp_1,Wn-2/.--,

etc., (4) reduces to, for £ >q,
b
Rxx(l) = I a, RXX(Q-k) 2>q) (6)
k=1
In addition, for 2 <£qg
RXX(SL) # L ay RXX(SL—k) L= (7)

k=1
A set of procedures to determine p and g can
now be constructed based on (6) and (7) as follows.

(i) Form, assuming the true Ry, (') are available at the

moment, the (a+l+b)X(a+l+b) array
Rxx(a) Rxx(a—l).--.-RXX(O)RXX(I)RXX(Z)....Rxx(b)
R__(a+l) R (LR __(O)R__ (1) .

XX XX XX XX .

B Rxx(l)Rxx(O) :

: . . (8
R _(2a4b). = v v v v v 4« o v v « « « « « LR _(a)
XX XX

where a is larger than the maximum possible MA order
and b is larger than the maximum AR order. These
maxima can always be roughly deduced from a priori
knowledge.

(ii) Label the columns in the array as Ei,i=0,l,...,
atb, and normalize each column by their norm to

=
give ¢, = FE&W- . Apply the Gram-Schmidt ortho-
i
normalization procedure [8] to the columns, giving
w =c : vy = 1l
R [l
i-1 ui
u, =c¢c, -~ L <v.,¢c>,v, =
ool RO oy
(1ii) Check the remaining norms Hu.” against a threshold
TH (=0.1 for example) and let uy be the first vec~
tor such that “uk“ <TH;. Then from (6), p=k.
(iv) Check the remaining norms “uﬂl,i=l+l,...,a+b,

against another threshold TH; (=0.1 for example).
Let u, be the first vector such that ”uAI 2 THp.
Then from (7), g=p-(m-a). This simple relation
comes from the observation from (8) that Rxx(q) is
the first element of the column which lies p col-
umns to the left of the vector uy, and m-a is the
number of columns between the vector up and the
column whose first element is Rxx(O).

Several remarks are in oxder concerning the imple-
mentation of the method. In practice, the Ry, (-) are
not known and must be replaced by the estimate.

1 N-1

N7 ®)
n

X X

Rxx(z) = g D n-%

For a fixed number of samples N, the accuracy of (9)
deteriorates with increasing £, hence it is important
that the values a and b in (i) not be unnecessarily
high. With Rxx(l) replacing the true autocorrelations
in (8), it is possible that there is no[iuﬂ] that is
smaller than TH1. In that case, TH1 can be increased.
Or, the value of 'a'should first be decreased (this will
eliminate some of the less accurate Ry, (%) at large
lags that cause linear independence), then increased

{(to see if p is larger than expected), repeating step
(iii) each time. If linear independency persists,
(p,g) are simply set to their expected maxima. This
condition appeared infrequently in the simulation and
essentially means that some of the RXX(Q) are inaccur-
ate to the extent that they creat linear independence in
(8), even if a is larger than g. Also, since g=p- (m-a)
and 20, the check onl]uﬂl should stop at m=a+p. If no
oyl = TH2, q is set to zero.
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Thus far, the choosing of THi1 and TH, nas not
been addressed.  Clearly, they play a critical role in
determining (p,q). Raising TH1 will probably give a
smaller p while lowering THp will probably result ina
smaller g (assuming p>q). It turns out that TH;, which
really decides how small the norm of an orthonormal-
ized vector is before the vector is considered linear-
ly dependent on the other columns, can be chosen accord-
ing to the degree of spectral resolution required. The
relationship between TH1 and spectral resolution, def-
ined as the ability to distinguish two closely spaced
sinusoids, is developed next.

It is shown in [9] that for a sequence {sn} con-~
taining M pure sinusoids of amplitudes A; and frequen-
cies W;, the sample s, is exactly a linear combination
of its past 2M samples. Thus the autocorrelations of
sp satisfy, for M=2
4
Z d

(10)
k=1 k

R__ (m-k)
sS

where the ccoefficients d, are functions of w; and w;
and 2 Ai2
I —— cosw.m
X 2 i

i=1

k (a)

Rss(m) (11)

In [10], the correlations are expressed as, for Ai =1,

Rss(m) = costm cosAm (12)
where _ _ (b)
A= L2201 ® = Wy Ho (13)
2 2
Substituting (12) into (10) gives
4
costm cosbm = I dk'cosw(m—k)cosA(m—k) (14)
k=1

If A and m are sufficiently small so that cosA (m-k)=l
for k=1,...,4, then (14) becomes
4
~goswm &~ I 4
k=1

cosw (m-k) (15)

with this approximation, only a single frequency ®
appears in (15). Hence following the same argument
that leads to (10), (15) can also be expressed as

4

z dk cosw (m-k)
k=1

&

coswm (16)

2cosa and E; -1.

where it is shown in [9] that E}

Returning to (8), if {xn} is a sequence con-
taining two closely spaced sinusoids w; and w2, it
can be seen from the preceding (equations (12) to (16))
that depending on 'a', the starting value and w1
Wz, the third column us; may take on a very small norm
”ug”. If indeed Huz” <TH;, then choose p=2 and the
spectrum obtained from the ARMA model will only indi-
cate a sinusoid at @W. Thus it is important that TH;
be sufficiently small whenever very fine spectral
resolution is required. As a guide to choosing THi,
Figure 1 gives a plot of “uZH versus'a’, with ©w1=0.2204

and Wy = 9.2724 and an array size of 15. This plgg
is constructed from setting up (8) with the correlations
calculated from (11) for the given w; and wz and then
applying the Gram~Schmidt orthonormalization to obtain
uz||+ From the figure, it is seen that if the estim-
ated spectrum must contain distinct w: and w2, then
TH1 must be smaller than 0.1 if the starting value a
in (8) is 4.

IT1I. SIMULATION RESULTS

Several experiments were conducted to confirm
the theoretical developments and to evaluate the prac-
ticality of the method. The computations were per-
formed on a PDP 11/34 computer with an attached AP120B
array processor,

First the processes (see (1) for definition).

.3 I
.2 1
fluell
.1 ¢+
Values of a
2 4 6 8 10 12 14
Figure 1. ”ug” for two sinusoids,
[a:] [ 2.7607 [bo 1
az|_|-3.8106 -3
as| | 2.6535 b1 110
2] -0.9238
whose a, are identical to those in an example in
[10], and
2] 0.1 bo 1
az|=1-0.3 b1l 0.15
az 0.3 bo -0.35
- " L - -
[bs) 0.42]

were used to verify the algorithm as outlined in
Section II. The true autocorrelations were used.
They are computed from the difference equation (1)
and knowledge of the akrbi coefficients and an in-
put noise variance 0w2= 1. The array (8) was set
up and indeed the true orders were detected for
both processes. However, it should be noted that
for process (a), whose spectrum contains two peaks
at the two frequencies of 0.2204 and 0.2794 [10],
if the start value is at a=4 and b=10 (hence 15
columns) , ||u|| =0.0736 so that a THy =0.1 will
erroneously give p=2. On the other hand, if a=10
and b=4 (still 15 columns), |luzll= 0.17, ||us] =0.106
and |[us] =7.7% 107 so that TH1 =0.1 will give the
correct result of p=4. Thel]uﬂ] values are close
to those predicted in Figure 1, which of course is
for the special case of two pure sinusoids. The
purpose of studying process (a) is to stress the
fact that TH; should be selected for each applica-
tion, in particular with reference to the degree of
spectral resolution required.

Next, only estimates (see (9)) of the auto-
correlations were used in (8). Since only a finite
sequence length is available for estimating the
ARMA orders, there is no reason to believe that the
estimated orders should equal the true orders. In-
deed, they were not in many ‘instances. As an evalu-
ation of the fitting properties of the ARMA models
with estimated orders, comparisons were made between
the models with estimated orders and true orders.

Consider again the ARMA process
P a

z X + I b, w
k=0 S 0K 5o 1

a
n

n-i

Let (p,q) and (B,§) be the true and estimated orders,
respectively and (a, ,b.), k=1,...,p; i=1l,...,q and
/\B _ A_k_l ~ ..

(a , i) k=1l,...,pP; 1=1,...,3 be the coefficients
es%imated, by least squares, from the sequences

{x} and {wn}, n=0,...,8-1. The least squares sol-

ution for (Ek,Si) are
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- 11 ~ ~ ~ :!g' o -7
[ @1 ][R0 R oD R 1R @ DR ] ana b . g
a Ryx (1) l . roTE - Z ax b Yoi (21)
. AZ ~ ~ R .t k=1 i=]
_pPl- f{X}_{(I_)_:_L)_ _ ﬁxi{(?)!R}_;W_(—E_))_ _ l}va_v((_l_p_) 1_lm_( (lj) and tests the whiteness of ;n and gn- The idea behind
= ~ 2~ ~ ~ (18) to (21) is that if the fitting is proper, the MSE
gg Rxw(_l) Rxw(—p) !wa(o) wa(O) Rxw(o) should be small and ?n and r, should be very close to
. : [ : bowy, which is a BEWI]\_I sequence. Let
by R ,(a-1)..R__(a-p) Iwa(q) ....... R_(0) -Rxw(q)- R.-(2) = N—:_L-Q— ) ;n;n—l (22)
(7 i - .
The solution for (ak'ﬁ ) are smllar, except with (8,3) be the sample co:_crelatlons of rn. The whiteness test
[5] states that r, is a white noise sequence if for
instead of (p,g). The RXX( ) and Rxw( ) are computed n Z(2) 1.96
from {x } ana {wn} according to (9). If {wn} is not 2=0,...,L, less than 5% of the CQ, E‘_‘—(—RT exceeds ——=—,
avallable, techniques other than (17) are reguired to K ~ T 4
compute the coefficients but this is of no concern The same applies to {rp}.
here. The processes (a) and (b) were tested and 40 inde-
Two criteria for comparlsons were considered. pendent runs were performed to give the statistical
The mean sgquarced error (MSE), given by results in Tables 1 to 3, In each table, the heading
N-1 P q COW stands for coefficient of whiteness, and is the
2 - - 2 percentage of the number of times, out of a total of
L e = (x - ¥ ax - I b.w ) (18) _ ¥ ) .
=0 n n k=1 kK n-k j=g L p7i L=40, that cg, exceeds 1.9?/ N. Due to th(la largg vari-
and ances associated with estimating correlations with
N-1 IAQ a R small samples, the COW is not given for the N=100 runs.
z €n2 = (x, - za X " z biwn—i)2 (19) For process (a), where by = 1X107%, it is essent-
n=0 k=1 "' i=0 ially an AR process and is so estimated in the majorlty
is one, the other is the residual whiteness test [5] of cases in Table 1. For the few runs where (p,§) are
which computes the residuals smaller than (4,1), the MSE are also smaller, indicat-
_ P _ q _ ing that for those particular sequences, a smaller order
r = ¥ - ¥ ax -~ T bw . (20) fit is better. For N=4000, all (p q)—(4 0) and the MSE
n noo, g Kok o in-d are equal (to within third decimal place) to the MSE
TABLE 1 TABLE 2
Process (a) Comparison of MSE, N=100 Process (b) Comparison of MSE, N=100
p=4 , g=1 P a MSE p=3 g=3, b a N
MSE MSEX10~ MSEX10
48 3 o] 27 70 13 13 86
27 4 0 27 78 12 9 12
38 4 0 38 300 10 9 4
50 4 0 50 192 11 9 35
18 3 0 9 67 11 8 63
55 4 0 55 137 11 8 4
107 4 0 107 727 10 7 21
53 4 0 53 14 12 P 4
49 4 0 49 132 11 9 18
27 4 0 27 181 13 13 5
31 2 0 9 422 12 9 13
19 4 0 19 213 13 13 25
52 4 0 52 7 13 13 4
47 4 0 47 57 11 9 5
68 4 0 68 111 13 13 43
32 4 0 32 3 13 13 42
97 4 0 97 159 12 9 103
53 4 0 53 40 12 9 18
48 4 0 48 92 13 13 36
28 4 ¢} 28 266 9 2 153
30 4 0 30 195 13 13 36
24 4 o] 24 194 13 13 18
39 4 0 39 287 13 13 132
46 4 0 46 7 13 13 30
32 4 0 32 4 13 13 7
60 4 0 60 275 12 9 9
18 4 2 19 182 11 8 19
65 4 0 65 5 12 9 10
15 4 0 15 35 12 9 6
26 4 0 26 15 13 13 23
48 4 0 48 213 12 9 9
22 4 0 22 9 12 9 12
60 4 0 60 426 10 7 13
32 4 0 32 574 11 8 142
57 4 0 57 4 11 8 6
13 3 1 7 35 11 8 15
39 4 0 39 115 12 9 13
29 4 0 29 122 12 9 22
66 4 0 66 285 13 13 12
34 4 0 34 62 12 9 11
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TABLE 3

Process (b) Comparison of MSE and COW, N=4000

a=3 p q
COW

p=3

MSEX10™"* MSEX10™*  cow

12
12
13
12

8
10
12
10

8
10

9
10
13
12
11
13

8
12
12
10

8

9
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from (4,1). Hence the results are not shown. The TH:
used was 0.01 and THz = 0.1. Such a small TH1 was nec-
essary to ensure that the frequency components 0.2204
and 0.2794 are resolvable.

Table 2 gives the process (b) results for N=100.
In 31 out of 40 runs, the MSE from (p,q) are smaller.
At N=4000 in Table 3, the MSE fromA(ﬁ,a) are smaller
in 29 runs. For whiteness test, (p,q) and (p,q) have
equal COW in 17 runs and for 6 runms, (B,§) has smaller
Ccow.
~ . Finally, it is noted that for process (a), the
(p,q) are consistently very close to (p,q) while for
process (b) they are much higher than the true orders
(3,3). This can be explained by the fact that process
(a) essentially contains two periodic components so
that the correlation estimates, even at large lags,
still have comparable magnitudes with respect to those
at small lags. For a fixed variance, the reliability
of the correlation estimates do not decrease with large
lags. Process (b) is just the opposite. Its correla-
tion values drop off in magnitude rapidly after 4 lags
and it is much more difficult to obtain (percentage
wise) correlation estimates that are small (compared
with the magnitude at zero shift). These inaccuracies
manifest themselves in (8) by giving linear independ-
ency to the columns when theorgt}cally they should not
be. The result is that high (p,q) orders are estimated.

IV. CONCLUSIONS

Determination of the orders of an ARMA process
from its output sequence is a necessary step in some
spectral estimation and system identification techni-
ques. A one pass method is proposed to estimate the
ARMA orders without the need for trials nor the inter-
mediate steps of calculating the AR coefficients. Sim-
ulation results have demonstrated the effectiveness of
the new method. Using MSE and COW as performance cri-
teria, models with (p,&) orders in general give better
results than models with (p,g) orders. This is part-
icularly evident at low sample points, when the correl-
ation estimates are less reliable.
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