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RESUME

Un moyen de rendre compte de 1'incertitude
du _comportement  dynamique d' un systme
autorégressif modele par 1'é&uation

(N x(n) = Z a,(n)x(n~1) + G(n)uln)

.:-_:l 1
est de rendre les coetficients ai(n) et G(n)
stochastiques. Le but de cet article est de

”

presenter un résuné des résultats concernant ce
modeéle. En part1cu11er, il est supposé que les
aj(n) et G(n) sont indepéndants, et constituent
des séhuences aléatoires stationnaires du premier
ordre, et .que des conditions telles que (1)
puissent etre approximées par une equatlon dont
les coefficients constants sont les espérances
mathématiques:
M
T a.X(n-1i) + Gu@)
. 1
i=1

(2) x(n) =

Les limites du signal erreur Lx(n) - x{n)|
sont presentées, Elles serggnt a evaluer la
performance du modéle simplifié dans le cas d'un

segment\ fini, et presentent des conditions
intrinséques necessaires pour une bonne
approximation. A  partir de ces premiers

sultats, il n' est possible d'obtenir qu' une
condition de convergence asymptotique de l'erreur
qui est tres restrictive. Une &tude additionelle,
dans le cas d'un segment infini, permet d'obtenir
une condition mogps contraignante. Cette
condition est exprimee en tonctlon d'une mesure de
perturbation, et des poles du systeme simplifié.
Les donnees obtenues  par simulation
confirment les résultats théoriques.
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SUMMARY

One way to account for uncertainty in the
dynamics of an autoregressive (AR) system is to
allow the coefficients of the model equation to be
stochastic:

M
&) x(n) = I a (a)x(n-i) + G(n)u(n)

i=1
It is the purpose of this paper to present a
summary of results concerning this model. In
particular, it is assumed that the aj(n) and G(n)
are independent, first order stationary random
processes and conditions are sought under which
(1) can be approximated by a time invariant
equation in which the coefficients and gain are
the stochastic means:
M
b aii(n-i) + Gu(n)
i=1

(2 X(n) =

Bounds on the error signal [x(n) - X(n)] are
presented which are useful in evaluating the
pertormance of the simplified model on the finite

time line, and which contain inherent conditions
for good approximation. From these initial
findings, however, only a very restrictive

condition for asymptotic convergence of the error
can be inferred. Further study of the long term
case yields a significantly relaxed condition for
convergence, This condition is formulated in
terms of a measure of perturbation and the poles
of the simplified system,

Data from simulation studies confirm the
theoretical findings.
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1. MOTIVATING PROBLEM

The autoregressive (AR) model, which is widely
employed in many interesting problems is often used
with the foreknowledge that the time invariant AR
equation 1is only an ad hoc approximation to the true
system dynamics. One way to account for uncertainty in
the model is to allow the coefficients of the AR
equation to be stochastic:

M
n x(n) = I ai(n)x(n—i) + G(n)u(n)
i=1
where, ajfn) and G(n) are independent, first order
stationary processes and u(n) is an uncorrelated
driving sequence. While studying methods for modelling
pathologic speech production (speech produced by a
person with a functional or organic disease of the
larynx), such a model became interesting to the
authors. It is the purpose of this paper to present a
summary - of the results of the study of this stochastic
AR model. In particular, we seek conditions under
which the stochastic parameter system of (1) can be
well approximated by a time invariant model in which
the random coefficients and gains are replaced by their

mean values:
2) X(n) = I Eiz(n-i) + Gu(n)
i=1
in which 3;=Ela;(n)J, G=E[G(n)], and X(n) is the output
of the simplified system., The use of the simplified
dynamical equation (2) rather than (1), reduces the
model to the domain of analysis by well known systems
" analytic techniques (AR identification, stability
analysis, etc.). In Section 2 we present results which
are primarily useful in evaluating the performance of
the approximation on the finite time interval. 1In
Section 3 the behavior on the infinite time 1line is
studied.

M

2. RESULTS FOR THE FINITE TIME LINE

Geperal Theory, We condider here the approximation of
(1) by (2) on nel1,Nl. 1In earlier work (Deller, 1981)
it was proven, starting with a theorem for a more
general class of systems (Meerkov, 1972), that, for the
restricted class of systems for which aj(n)%43, and
G (n)20 vi,n the simplification of the model is valid.
(In fact, the simplification was shown to be good V
nel0,00] if these approximations are sufficiently
close.) It is clear that such conditions on aj(n) and
G(n) require these parameters to be small in both mean
and variance. Intuitively, it seems reasonable that a
small variance condition alone should be sufficient to
permit the use of the approximate model. This
intuition is formalized in the following theory:

THEOREM 2.1:
(3) y(n+l) = ¢(£(n), y(n), n},
where, y(n) is an M-vector, E(n) is a first order

stationary Q-vector, and & is @ general vector function
of B, y, and n,is well approximated by the equation

A general Markov system of the form

y(0) = Yo

(4

Y1) = ¢(y(m), m), y(0) =y,
in the sense that
_ N-1
) [ly) - ym) || < efl + z "}, w.p.1
i=1

it3¢,K such that

(6) [[eE(), y(n), n) - ¢(y(m), m)|] < ¢

D ot @), m - o m, mI] <k |ly @) -y ]
Vv x',¥" in the domain of @.

M 2 1/2
where, |lyl| 2 [ 2 y.7] for an M-vector
= N 1
p A=l r.1/2
and, |[Y|] 2 nax eigenvalue of ¥ Y1) for a matrix.
PROOF: See (Deller and Gulboy, 1983),

The following corollary gives the desired results for
AK systems:

COROLLARY 2.1: An AR system of form (1) is well
approximated by (2) if the following conditions hold:

® 1. Ja@ -7 <u, et - & <, win
2. the input and initial conditions are bounded,

in the sense that
(9) |x(n) - %) ] < uef@®, nefl,N]
where f(N) is a bounded function of N.

For a fixed N, this corollary asserts the
arbitrary goodness of the approximation by choice of
small enough m., or (small enough bound) in accordance
with the intuition which motivated the theorem.

PROOF: The proof is sketched in the Appendix using
notation developed in Section 3. A complete proof for
the autoregressive moving average (ARMA) model is given
in (Deller and Gulboy, 1983).

Sipulatiop studies. Computer simulation studies to
verify the results of Corollary 2.1 as well as the
earlier work cited at the beginning of this section are
reported in (Deller, 1981(2)),

3.RESULTS FOR THE INFINITE TIME LINE

Prelimipary discussion. It is clear that, for a fixed
M, the assymptotic convergence of the bound ((9)) on
the approximation error depends on the convergence of
f(N) as N +o0o. Inturn, examination of the proof of
COROLLARY 2.1 (Eqn. A -2 ) reveals that a sufficient
condition for this convergence is that:

(10) (p+an) <1

where, p=max pole magnitude of the averaged model (2)
and ® is a small positive number. This condition
requires p<1 which, in turn, assures the assymptotic
convergence of the other potentially explosive term in
(A= 5 ) i.e.,

N-1 .
(11) by p:L
i=1
The implication of this later condition is that the
system of (2) need be bounded input-bounded output
(BIBO) stable (all of its poles must be inside the unit
circle in the z-plane) while that of the former is that
the perturbed coefficient system be 'pointwise stable',
i.e. that its poles be inside the unit circle for each
n. This condition is unnecessarily restrictive as we
demonstrate presently:

Theory. Consider rewriting (1)
space formulation:

in the state

(12) imﬂ)=§@)§@)+Gmmm)
cxne1)

x(n)

0

where, x(n)=lx(i=1)...x(n=-M)1"

um)=lun-1)...un=-M)J°
c=[100 .., C}

A(n) = [a Catny.., 4y, tn \,'|
o

i I(N'- 9 '
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'

and similarly rewriting (2) as

(13) X(n+1) = Ax(n) + Gu(n)

%(n) = ¢'T(ne)

where x,u ¢ and E are defined in the obviously similar
way. We define the error matrix,

(1) ) = Am) - X

in which all entries are zero except for the first row
x:,hich coni;_ains the coefficient perturbations
ai(n)=ai(n)-a-1.

The following are useful facts about the matrix x:

(15.1) The eigenvalues of & , :\-L-., are the poles of the
AR system (2) (Kailath, 1980).

(15.2) It follows that #AIl = max pole magnitude of
the system (2)

We define p = max | ;|
4
57'2& has

(15.3) Further, it follows that A
eigenvalues | A;1* and norm max|X;)*= p*.
[

The ultimate goal in this section is to examine
the behavior of the approximation of (1) by (2) (or,
equivalently, (12) by (13)) as h =+ oo, We make the
assumption that the approximate system (13, is stable
(either in the sense of Lyapunov or in the BIBO sense
see below) which implies that the signal X(n) will
remain bounded in response to bounded inputs.

It remains to determine conditions on the
stochastic parameter system to assure that it likewise
does not "blow up" in response to reasonable inputs and
hence diverge away from the approximation system. Thus
far we have only the very restrictive conditions noted
above.

The results to follow are based in internal
stability considerations since they are easier for
formulate than those centering on BIBO stability. It
should be noted, however, that since the transfer
function of an all pole system is irreducible, internal
stability and BIBO stability are equivalent (Kailath,

1980). This fact is also intuitively obvious from the
autoregressive nature of the computation: a bounded
output will require all previous (internal) values to

be bounded as well. The main stability condition is
contained in the following:

THEOREM 3.1: Let of denote the variance of a;(n).
Then system of (12) and, hence, (1), is internally
stable with probability one (wp1) if the condition

(o) |IF'E +s|] <1

. P . . : 2 2 2

is satisfied, in which 8 = diag (&1, ¢, ...6, ). To
prove the theorem we need the following based on
(Serfiing, 1980):

DEFINITION: Let X(n) be a sequence of random variables
which is convergent in the rth mean ie.,

(17) 1im E[|X(@) - X|F] = 0

n
X(n) is said to converge sufficiently fast in the rth
mean if

(18)  z E[|X() - X|T] <=

n=1
LEMMA: Convergence sufficiently fast in the rth mean
implies convergence wpi.,

PROOF: The proof is given in (Serfling, 13%0).

PROOF OF THEOREM 3.1: We seek a condition which causes
the homogeneous solution of (12) to tend to 0 as n-»
oo, for arbitrary bounded x(0). If u(n)=0, it is easy
to show that

(19 ENxmeD 1> = EHg AT mAMEMm

Note that

20) ATmam) = B(@" + X)) @ + &)

and it is not difficult to show that the cross terms in
tne quadratic are zero ie.,

(21) E(ATmE] = E[A A = 0
is equal ¢to

and that the final term in the quadratic
tne matrix, S, so that (19) becomes

(22) EtlxmeD N = EHx () (A E+Six(n) i}
< VER i Elixmn®
which can also be written

23) ElxmeDI® & HEEs 117 ENxO T

Eqn. (23) implies that EHx,(n+1)H7' and hence Elx2(n)]
converges sufficiently fast in the mean if condition
(16) holds. According to the LEMMA, therefore, (16) is
a sufficient condition for internal stability of (12),
and, hence, of (1). Q.E.D.

It is of interest to interpret the stability
condition in terms of the poles of the systems (1) and
(2) instead of the coefficients. We assume for
simplicity that the variance of the random coefficients
is the same for all i, so that $ = &2ZI. The following
result obtains:

COROLLARY 3.1: A sufficient condition for the internal
stability of the system of form (12) and, hence, of
(1), wpl is that

(2u) p2 + 02 <1

where p is the max pole magnitude of the system (13) or
(2.

PROOF:
eigenvalues
HAR+ S
(16) are
assumption.

From (15.2) it is clear that AAtg§ has

peo= xR+ g% , By definition,
= m?x pi = p*+ o*. Therefore, (24) and
equivalent under the equal variance

It is interesting to note the similar condition which
results from a different approach in the small
perturbation case., Again we assume equal variances.

THEOREM 3.2: A sufficient condition for the internal
stability of (12), and, hence, (1), is

(25 p2 + c2 02 <1
A-m M-1
where ¢ = ‘Z "ﬁ"ngfo;TT
=%, 1%

and where the &; are as defined in (15.1).

SKETCH OF PROOF: (A complete proof is given in
(Gulboy, 1982).) It is argued by Gulboy (using the
results of perturbation theory (Kato, 1980)) that the
eigenvalues of the perturbed matrix, A(n), are given
approximately by

(2) K@) =X, +c ;i(n)
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A

for small 6%, Since the homogeneous solution,

( n-1
T xmen ] - 1E A <]
r=1

n-1 2
=0 Pt (x|
r=1

where, p(r) = max eigenvalue ("pole") of A(r). Using
(26) in (27) and taking the expectation leads to the
conclusion that

(28) lﬁm Hx(n+1) 11 = 0, wp!
QOE.D.

These results imply that the perturbed AR system
of (1) need not be 'pointwise stable® in order for the
system to produce a bounded output in the long term.
In fact, it is quite clear from conditions (24) and
(25) that one or more of the "poles" of A(n) may be
outside the unit circle at any time value with nonzero
probability. It is therefore possible to rationally
approximate systems of form (1) which do not meet the

ictive copditions deduced from Corollary 2,1 by an
average coefficient system of form (2). The usefulness
of the approximation in the long term can be assessed
by computation of the bound in (9) for large N,
although it is clear that this bound may diverge even
if the error in approximation does not.

We note finally, that the sufficient conditions
proved in this section can also be shown to be
necessary for the first order case, M=1 (Gulboy, 1982,
Ch.3). Because the minimum norm is used in computing
bounds above, one may conjecture that the conditions
cited are at least close to being necessary in the
higher order cases. This conjecture is supported by
the following experimental data.

iop study, The identification of a pertubed
sixth order AR process is considered. The location of
the three pairs of complex poles are those of the
formants of the vowel /i/, as in "BEET" when the
sampling frequency is 10kHz.

Table 1. Pole Loc
Magnitude H Angle (rd)
0.9488 0.1700
0.9688 1.4391
0.9444 1.8910

The signals x(n) and X(n) were generated using a
cascade form implementation where random sequences were
added to the coefficients in order to simulate the time
varying system., All random sequences were chosed to
have the same variance, which corresponds to the case
where all o; 's are equal to o .

In a first experiment we show the verification of
the theoretical maximum admissible value of the
variance o*. It was shown in Corollary 3.1 that a
sufficient condition for convergence of x(n) with
probability one is,

(29) p? o+ ot <1

which gives in this case:
(3w

since p = 0.9688. This theoretical value was verified
by generating 100 different realizations of x(n) for
each value of ¢ which was progressively increased.
The divergence of x(n) (or instability) was detected as
an overtlow error in the subroutine generating =x(n).

o? < 0.6134

It was observed that:
a) If o2 < 0,060 no overflow occurred.

b) If ot = 0.061 x(n) diverged at least once among the
100 realizations.

c) For 02 = 0.070 overflow occurred once out of two
realizations.

These results confirm theoretical expectations.
The experimental value of the maximum admissible
variance on the coefficients was slightly smaller than
the value predicted in (30), but this discrepancy can
be explained by the effect of the quantization on the
coefficients a;(n) which is equivalent to an extra

- internal perturbation, and hence, causes the effective

variance to be slightly greater than ¢%,

4, CONCLUSIONS

Results concerning the approximation of a
stochastic coefficient AR system of form (1) by the
time invariant model of form (2) have been presented.
Under the condition that the coefficients are bounded,
Corollary 2.1 can be employed to bound the
approximation error over the finite time interval. As
expected this bound vanishes as as the bound on the
coefficient perturbations becomes small.

In the long term, however, Corollary 2.1 yields
only a very restrictive condition for the error to
remain bounded, i.e., for the perturbed system to
converge. In particular, it is seen to be sufficient
that the poles of (1) remain inside the unit circle for
all n, This condition is relaxed in the results of the
theorems and corollaries of Section 3 in which it is
shown that the stochastic system need not be 'pointwise
stagle' to assure convergence of its output in steady
state.

The approximation bound of Corollary 2.1 can be
used to estimate the asymptotic error, though, from the
results above, it is clear that this bound can diverge
even if the error does not.
confimm the theoretical

Simulation studies

results.
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6. APPENDIX: SKETCH OF THE PROOF OF COROLLARY 2.1

This proof was deferred in order to take advantage
of the results of Section 3. For a complete version of
this proof, see (Deller and Gulboy, 1983).

Consider approximating the system of (12) by that
of (13) We first show that condition (8)-1 is
tantamount to (6) of Theorem 2.1. It is easy to show
fram (12), (13), and (8) that

(a-1)  |leCe(@), x(m),n) - ¢(x(n),n)}|

s [[am-Al] [lx@|[] + wu
where x(n+1) = ¢(g, x, n),

and x(n+1) ¢(x, n) and
it }iu(m) iU as assumed in (8)-2. Now, HA(n)-KH(Iu.Mz-
and a bound on [{x(n)!| can be shown to be
n-1
(a-2) |1xm)|] < X(praw™ + U@ {1+ £ (pra) ™)
9=1
2 s

in which the notation of (24) and (27), and the result
of Theorem 3.2 are employed. Clearly, S(n) £ S(N)
¥ n < N. Therefore,

(8=3) ||e(e(n), x(@),n) - ox(), W]

<% s Uy e neflLN] w.p.1.

Next, we verify that condition (7) holds:
(A=8) [fo(xfn),n) - ¢(x(n),m)}]
= ||Axm) - x@) ||

<pllx@ - x| w.p.1.

Examining (A-3) and (A-4) and using Theorem 2.1 it 1is
clear that

(A5 ||x(n) - X@) || < e {1 + z ply
i=1
and (9) follows immediately. Q.E.D.
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