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RESUME

Ce travail a le but d'introduire des techni-
ques avancées d'élaboration du signal pour
le traitement automatique des informations
de l'éléctro-encephalogramme (EEG).

En particulier on met en é&vidence les techni-
ques des filtres linéaires optimums avec la
application dans le moment de pré-2labora-
tion de 1'EEG. Le probléme en question est

la réduction du bruit musceolaire gui corrompt
le signal dans une bande de fréquence qui est
centrée & peu prés & 70 Hz et qui arrive jus-
qu'aux basses composantes de fréguence.

On décrit l'implementation d'un filtre de
Kalman gquil reduit cette contribution de

bruit et on présente 3 ce propos des resul-
tats expérimentals.,

En suite on applique & 1'EEG des méthodes
d'identification (la méthode des minimums
carrds & lots) et on extrait les paramétres
du model AR (autoregressif).

Les résultats de l'identification sont pre-
sentés dans un diagramme polaire qui réussit
4 capturer la dynamigue du m&me procés.

A partir des coéfficients de 1l'identifica-
tion on réussit & obtenir aussi le spectre
de puissance (spectre & maximal entropie)

et il vient comparé avec les résultats dé-
duits de 1'approche du périodogramme et de
la transformation rapide de Fourier (FFT).

Les méthodes d'élaboration introduites sont
trés efficaces pour les moments de pré-éla-
boration et d'extraction de paramétres uti-
les au but dyagnostique.

SUMMARY

The present paper aims at introducing ad-
vanced signal processing techniques for the
automatic analysis of electroencephalographic
traces (EEG). In particular, techniques of
optimal linear filtering are emphasized with
application in the phase of EEG pre-process-
ing. The problem encountered is the reduction
of muscular noise which corrupts the signal
in a bandwidth which is centered approxima-
tely at 70 Hz and goes as far as the low
frequency components. The implementation of

a Kalman filter which reduces such noise
contribution is described and experimental-
results are shown at this regard.

Furthermore, methods of signal identifica-
tion are carried out on the EEG tracing
(batch Least Squares method) and AR model
parameters are extracted. The results of the
identification are presented in a pole dia-
gram which is able to capture the dynamics
of the process itself. Starting from the i-
dentification coefficients the power spectrum
(maximum entropy spectrum) is also obtained
and compared with the results given by the
periodogram/FFT approach,

The introduced processing methods are extre-
mely suitable for the phases of signal pre-
processing and of parameters extraction use-
ful for diagnostic aims.
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INTRODUCTION

A widely diffused technique for the diagno-
stic evaluation of various pathologies at
the level of Central Nervous System (CNS)

is constituted by the analysis of electro-
encephalographic traces (EEG). The EEG is
detected via a series of electrodes positio-
ned in various standard sites (the most com-
mon lead system is the 10-20 one) on the ex-
ternal surface of the skull, The potentials
recorded in this way (unipolar or bipolar
leads) are the external signs of the elec-
trical activity inside the CNS and particu-
larly of the cortical neurons of the area
invicinity of the electrode itself.

From the clinical standpoint the EEG trac-
ing carries some information about the patho
physiological aspects of CNS: dominant rhy-
thm of the signal (i.e. frequency bandwidth
where the major information are concentra-
ted in the power smectrum); presence of pos-
sible paroxismal rhythm. (either "transient"
or "long term"); asymmetries of certain leads
(i.e. right vs. left, frontal vs. occipital
and so on) which may reveal the presence of
tumors, hematoma, bleedings and so on; indi-
cators of clinical status of CNS both in
physiological state (i.e.: ,sleep) and in pha-
se of drug induction (i.e. anesthesia, ef-
fects of neurolectic, antiepilectic drugs
and so on) and finally for the detection of
clinical death. The raw EEG tracings them-
selves are sometimes very poor of informa-
tion and the dinical evaluation by the neu-
rologist may be very difficult. The main ad-
vantage of EEG automatic treatment is to
provide physicians with post-processing me-
thods which are able to enhance the infor-
mation contained in the tracings. The tradi-
tional approaches for EEG automatic proces-
sing are in the time domain (zero-crossing,
slope descriptors, correlation analysis etc.)
and/or in the frequency domain (Fourier or
Walsh analysis, polispectra, cepstra etc.).
References may be made at (1) (2) (3) at this
regard.

In the present paper some results are illu-
strated which show applications of linear
digital filtering (traditional and optimal
ones) and of identification methods using
AR (autoregressive) models both for an
accurate parameters extraction and for a
spectral estimate which is compared with the
traditional FFT approach,

The application of these techniques of EEG
signal processing is discussed and the origi
nal properties of signal parametrisation -
which are derived are illustrated in a few
cases for the following aims: (i) step of
preprocessing (reduction of myoelectric
noise superimposed to the tracings): (ii)
step of parameters extraction useful for cli-
nical aims (monitoring of the effect induced
on the CNS by the delivery of strong ipoten-
sive drug during riskful surgical intervenc-
tion).

ADVANCED TECHNIQUES OF EEG AUTOMATIC PROCESS-
ING

It is not the aim of this section to deal ex-
tensively with the most common method of
EEG automatic processing. See the cited re-

ferences at this regard.

Here only a few methodologic information are
provided of advanced techniques such as opti-
mal linear filtering, identification and spec-
tral estimation which are applied to EEG tra-
cings. The relevant experimental results are
reported in the following section.

Ontimal Linear filtering

A discrete-time Kalman filter is implemented
for the reduction of myocelectric noise super-
imposed to the EEG tracing. Some a priori
assumptions are required: 1) stationarity of
the EEG time series (for normal subject tra-
cings this hypothesis is reasonably fulfilled
in wide sense (4) (5) for short time data,
while ergodicity is implicitally assumed);

2) knowledge of the mechanism of muscular noi-
se influence on the tracing (that is postula-
ted as the generating process of an impulsi-
ve Poisson distribution whose transfer func-
tion is determined in an experimental way) see
(6) (7); 3) estimate of the true signal model:
that is fulfilled by means of an identification
(via Batch Least Squares method or other al-
ternative approaches) of the EEG tracing gene-
rating mechanism in patients in particular re-
laxing situation in which, by hypothesisg, the
contribution of muscular noise is negligigle
ee also next paragraph).

Fig. 1 shows the block diagram of the filter-
ing procedure with the following input white
noises: w, refers to the signal model, wj
refers to the noise model and v to the noise
at the level of the measurement process. The
filter block is determined by the correspon-
ding matrices evaluated previously in the noi-
se and signal blocks (see points 2 above).

For details see (7) (8). The performance of the
filter is tested by evaluating the whiteness

of the innovation e(k) = x(k) - %(k/k=1): if
such hypothesis is fulfilled the Kalman fil-
ter is optimal in the sense that no other 1li-
near filter can do better to remove the noise
on the EEG signal with the above mentioned
assumptions. It is well known that the star-
ting hypothesis might be quite far from the
real case: in this case, the algorithm adapts
itself to the new coming data and may converge
in such a way as to minimize the prediction er-
ror, by adjusting matrix K(k).

Parametric identification

Many situations in biomedical signal proces-
sing may be described by the model shown in
Fig., 2, where y(k) is the time series consti-
tuted by the sampled signal and w(k) is a gaus-
sian white noise WN | O, x2| where E | wik)|-=
and E | w(k) w(l)] = "2‘5k1 for allk; E is

the expected value and 6kl is the delta of
Kronecker,

Generally the model indicated is random, dis-
crete, and wide sense stationary.
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Inside the set of parametric models, the ARMA
models constitute a particular important fa-
mily defined by the linear difference equat-
ion
N
y(k)= l a y k-n)+ Z cmw(k—m)+w(k)
n=1 m=1

where the vector of parameters

Cq wev Cy |

lageee ay

and variance Az define univocally the model.

In the case of pure AR (autoregressive) model,

the coefficients c_ are equal to zero., In =
this case the idenFPification problem calcu-
lates the parameters a and 12 by minimiz-

N
2
== (k)
Nk=116 |

ing the figure of merit J(e)
where N is the numerosity of the time series
and ¢(k) is the prediction error.

The various ways of parametric identification
are described in (9).

The goodness of the identification is tested
(whiteness of the prediction error) and the
optimal number of coefficients (degree of
polynomial in ap) is verified according to
criteria already introduced in literature
(Akaike's and Rissanen's) (10) (11).

An original visualisation of the identifica-
tion coefficients is the pole diagram in the
complex z~plane: changings in pathophysiolo-
gical conditions determine movements of the
poles (and zeros) of the identification in
a dynamic ways.

Applications in EEG signal processing are
found in (12) (13) (14).

Spectxal estimate

The identification allows to obtain an esti-
mate of the power spectral density S (£)
given by

2
Sy (£) = A At :
M -j2rfkAat 2
[1 - 7 alk)e
k=1
where At is the sampling period, a(k) and x2

are determined via identification.

It is possible to demonstrate (15) that such
spectrum, is a Maximum Entropy one (ME) in
case of gaussian models. Such method has

some advantages in respect to the more tradi-
tional FFT techniques carried out on the pe-
riodogram (fewer coefficients to obtain use-
ful clinical information - even for short ti-
me data -~resolution which is not dependent

on N, no errors induced by the windowing
procedure, no rigid assumption on how is

the signal outside the considered time lenght
etc.) and some disadvantages as well {very
smooth spectra with little information in
case of few coefficients, the scale of am-
plitude is not maintained in the spectrum,

an overestimate may induce spurious peaks

in the spectrum, further studies have to be

done for the choosing of optimal number of
coefficients etc.).

For detailed comparison between AR spectral
estimation and FFT see (16).

EXPERIMENTAL RESULTS

Application of linear digital filtering

The original EEG signal,Fig. 3a,is processed

applying three methods :

i) low-pass digital filtering procedure with
35Hz as -3dB point (FIR filter, Weber-
Cappellini window, 299 coefficients).

The filtered signal is shown in Fig. 3b.
There is a satisfactory removal of high
frequency noise but the low-frequency com-
ponents (under 35 Hz) of myoelectric noise
are not obviously reduced.

ii)Kalman filtering procedure: sixth order
filter described by the models reported in
Fig. 1 (Fig. 3c).
It is possible to note that a good removal
of the low frequency myoelectric noise is
also fulfilled. The models of the noise
generation mechanism and the EEG signal
generation have proved a satisfactory be-
haviour on the basis of the introduced fi-
gures of merit (whiteness of the prediction
error and fulfilling of Akaike and Rissanen
criteria in the identification block and
whiteness of the residual in the Kalman
filter). For further details see the cited
references.
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Fig. 1 - General block diagram of the whole
Kalman filtering procedure. z(k) is
the EEG time series corrupted by v(k)
and yz(k) (see text).
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2 - Schematization of identification
model.

Fig.

iii)the third method comprises method i) and
ii) (Fig. 3d).
Here the behaviour is very satisfactory,
as the FIR filter is able to remove in
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(e)

Pattern of EEG original signal a).

b) The same signal after low-pass digital filter;
¢) After the Kalman filtering;

d) After the operations (b)

From (8).

a deterministic sense even the high fre-
guency noise components which are still
present in method ii . The useful clinical
information of the signal in (a) is main-
tained in (d) and the method was greatly
appreciated by the neurologists who co-
operated in the present research.

Other results were obtained via traditional
band-pass digital filtering (the bandwidths
are the classical 8§, 6, a, B bands). These
results are not discussed in the present pa-
per.

Application of identification techniques

The identification techniques previously des-
cribed are applied to the EEG signal. The
aim is to identify the model of the EEG gene~-
rating mechanism which satisfies the starting
hypothesis of an AR model (all-pole model).
The method of batch Least Squares is applied
and the goodness of the model is tested under
the form of the whiteness of the prediction
error (Portmanteau test or other similar
ones); the order of the model is determined
by optimizing the already introduced figures
of merit (Akaike's and Rissanen's).

The method is applied to the EEG signal recor-
ded during riskful surgical intervenction (ce-
rebral aneurysm clipping under controlled ipo~
tension) in order to detect the changes of
EEG pattern during the induction of ipotensive
drug (sodium nitroprussiate:SNP). Fig. 4 re~
ports as examples the EEG signal together
with the relevant pole diagram determined af-
ter the identification in two events of the
operation: (a) before induction of anaesthe-
sia, (b) during the peak of the induction
phase of SNP.

and (c);

The pole diagram (8 coefficients) is extreme-
ly sensitive to the various introduced changes
in EEG pattern during the different epochs of
the intervenction in about 15 considered pa-
tients. The introduced method is believed a
very promising techniques of EEG parameters ex-—
traction.

Smpectral. estimate

Another advantage bound to the identification
method previously described is the possibili-
ty to make an accurate spectral estimate

of the EEG signal starting from the AR coef-
ficients.

Fig. 5 reports the spectra determined in this
way referred to the cases illustrated in Fig.
4 using 8 and 20 coefficients respectively. In
the figure the power spectra calculated via
the traditional algorithm of FFT carried out
on 256 points are also shown as a reference.

The compariscon demonstrates how almost all the
information contained in the FFT (256 coef-
ficients) are enhanced in the AR spectra (us-
ing only 8 or 20 coefficients); furthermore
the information in the latter case is without
the redundancies of the former which is also
corrupted due to the windowing procedure and
the shortness of data segment which was chosen
as a starting hypothesis. More detailed infor-
mation about these problems and the relevant
advantages and disadvantages may be found in
(16) (17).
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Fig. 4 - EEG signal and pole diagram after the identification.
Basal condition (before operation) {(upper part). Epoch
in which there is a peak of infusion of SNP (lower part).
symbol X identifies the actual pole, while symbol 4
identifies the pole in the preceding epoch: a dynamic
display of the phenomenon is hence possible
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Fig. 5 - Power spectra of the EEG record shown in Fig.
a) is calculated via periodogram and FFT,
b) via AR model with 8 coefficients and
c) with 20 coefficients.

4.(upper part).
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