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RESUME

Le récepteur 3 multiples fréquences est une com—
posante importante pour 1'interface entre des réseaux
analogues et numériques. De nouvelles solutions au
probléme du récepteur Amultiples fréquences ont été
etudides. Les nouvelles solutions sont basées sur
1'estimation paramétrique d'un spectre autoregressive.
Les spectres sont estimés a partir d'é@chantillons de
longueurs finies. Les diverses fréquences sont obte-
nues en détectant la position des maximums et le con-
tenu énergétique des valeurs pointes.

Cette &tude est basée sur les résultats de simu-
lations pour diverses combinaisons de fréquences et
de bruit. Les performances des algorithmes d'esti-
mation des spectres ont &té classées en fonction de
leurs probabilit&s d'erreurs et de leurs efficacités
en fonction de la taille de 1'échantillonnage. L'es-
timation de spectres autorédgressifs par la methode
d'auto correlation s'aveére &tre une alternative inté-
ressante au probléme de la détection de fréquence par
rapport aux solutions existantes. De nouveaux déve-
loppements dans 1'application de cette technique sont
a suivre.
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SUMMARY

An important component in the interface between
analog and digital networks is the multifrequency re-
ceiver. New solutions to the multifrequency receiver
problem have been investigated. These solutions are
based on parametric spectrum estimation techniques of
the autoregressive variety. The spectra are estima-
ted based on a finite sample size and the tonas are
detected by searching the location and energy content
of the peaks.

This study has been based on simulation results
for various signalling frequency combinations and
noise conditions. The performance of the spectral
estimation algorithms have been ranked with respect
to their probability of error performance and sample
efficiencies. The autocorrelation method of estima-
ting the autoregressive spectrum has been found to be
a viable alternative to existing solutions for the
tone detection problem. Further progress in the re-
alization of this technique is to follow.

1, INTRODUCTION

Direction and control of automatic switching ma-
chines in telephony are carried out through tone sig-
nalling. Tones can be used for multifrequency signal-
ling in a data set, Touch-ToneR signalling, milliwatt
tone testing and in a variety of information signal-
ling functions such as address, busy, idle, seizure,
disconnect signals and audible ring, dial tomnes, re-
ceiver off-hook signal, etc.

Conventional analog multifrequency (MF) receivers
are handicapped for various reasons, i.e., they are
subject to thermal aging, fine initial adjustments are
required, they are inherently large and heavy and the
implementation requires a number of LC filters and
nonlinear devices. There is therefore considerable
interest in developing alternate and efficient digi-
tal multifrequency receivers.

The existing digital dual tone multifrequency re-
ceivers can be expressed under the following headings:
i) Bank of bandpass filters [1], ii) Spectral moment
estimation [2], iii) Zero crossing counter [3],

iv) Discrete Fourier transform based receiver [4],

v) Quadrature detection. In this research we have in-
vestigated the effectiveness of various nonlinear
spectral estimation techniques for the dual tone mul-~
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frequency receiver.

2. NOISE BACKGROUND AND DETECTION LOGIC

The most common multifrequency receiver is the
dual tone multifrequency (DIMF) receiver where two
tone signals at two different frequencies carry the
information. The frequency matrix for the Touch~ToneR
DTMF system is shown in Table I.

Table I: Frequency Matrix for the Touch—ToneR Receiver

Upper Group

1209 1336 1477 1633
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I
|29
3 1770 4 5 6 S
& T
o 1852 7 8 9 S
[
2
S 1941 * 0 # 8

Noise Background

The tones are imbedded in bandlimited (0-3 KHz)
Gaussian noise and contaminated by sporadic outbursts
of impulsive noise. The impulsive noise is represen-
ted as an additive combination of Gaussian noise and
a low density shot process [51:

K(t)
n(t) =}
k=1

where w(t) is the Gaussian noise, {ui} are indepen-

ug h(t—;i) + w(t)

dent identically distributed random variables with
common power-Rayleigh distribution:

o] a~1 o cas2
f(u) = -—a-[ul exp{-|u]"}

20 - <y < ®

and K(t) is a Poisson counting process. Finally,
{h(t)} denotes the shot noise waveform, i.e., typical-
ly, h(t) = exp(-at), t =2 0. The impulsive noise it-
self could be originating from arcing during switch-
ing, accidental hits during repair and maintenance
work and various other sources.

The detection of the tones could also be pertur-
bed by the presence of other signals, i.e., voice di-
gits., This type of error is called digit simulation.

Detection Logic

The tone detection algorithm is based on the es-
timation of the power spectral density and on testing
for the location and energy of the spectral peaks.
The detection (or rejection) logic consists of the
following stepts: i) The signal magnitude is in the
specified range, ii) The difference in the energy
level of the tomes (twist factor) is in the specified
range, iii) The spectrum in the remaining six bands
is at least 6 dB below the second largest output from
frequency analysis, iv) The estimated tone frequency
as determined from the location of the spectral peak

is within 3.5% of the actual tone frequeancy. These
requirements are summarized in Table II.

Table II: Requirements for DTMF Receiver

Allowable frequency deviation 3.5%
Allowable signal level -3 to =24 dBm
Allowable twist < 15 dB
Response time 25 to 40 ms
Tone to background separation > 6 dB -4
(Gaussian noise, (15 dB, SNR) P < 1.0 x ].O'~3
Impulsive noise, (15 dB SNR) PE < 1.4 x 10
Digit simulation(room noise + speech) Pe< 3. x 10_4

3.

ESTIMATION ALGORITHMS AND ACCURACY

In the parameter estimation. approach to tone de-

tection one would like to implement the maximum (ML)

estimator.

The ML parameter estimate for a single tone

consists simply of calculating the discrete Fourier
transform of a sequence and identifying the peak loca-

tion and its amplitude.

In the presence of several

tones, however, the ML parameter estimation is consid-
erably more difficult and involves a tedious nonlinear

search.

In the quest for suboptimal but viable approa-

ches to tone parameter estimation we conjecture that
the parametric power spectrum estimation methods will
be an attractive alternative.

Tone Parameter Estimation Accuracy

Under certain regularity conditions, useful bounds

on the accuracy of the parameter estimates can be found

[61.

Consider the multitone signal in additive noise:
M

r(t) = '2 Ajcos(2mE t + 0,) + w(t) 1)

i=1

where w(t) is a sample function of a white Gaussian

process.
i,e.,

Let us denote the parameter vector by a ,

a = -
a [AlflelAzfzez...]. The Cramer~Rao bound for

the j~-th parameter is given by

~ a3yl
var{aj aj} >y (2)

where ZJJ is the jj-th element of the inverse of the
Fisher information matrix, i.e.,

Zik Ja

32
= ~E{ _'é;— log £ (__{/f_)} 3
ik

with the probability density function

f(x/s) = —

1 1 T ~1
—>———75 expl - = (x-s)'R “(r-s)}
(zﬂ)N/szl/z 2

r, s being, respectively, the sampled vector of the

received signal and the pure tones.

The Cramer-Rao

bounds for the two tone problem are shown in Figures

1 and 2.
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1: Cramer-Rao bounds on the frequency estimation
accuracy versus the number of data samples
used (dashed) and the signal to noise ratio
(solid).
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Fig. 2: Cramer-Rao bounds on the frequency estimation
accuracy versus frequency separation Af(solid)
and relative phase angle (dashed).

In Fig. 1 the estimation accuracy of the tone frequen-

cy, cg E{(f f ) } is plotted versus the number of

samples used. For example at a signal to noise ratio
(SNR) of 15 dB, the tone frequency can be estimated
with a standard deviation of 32 Hz if only 10 samples
are used. Otherwise the accuracy improves rapidly
with the increased number of samples. Also the vari-
ance of the estimate decreases linearly with SNR. 1In
Fig. 2 the estimation accuracy is plotted versus the
tone separation. Recall that in typical DIMF's the
tone frequency separation is of theorder of 200 Hz or
beyond; thus if 60 or more samples are being used (15
dB SNR) the Cramer-Rao bounds behave like that of a
single tone. One can note also the non-negligible
phase dependence of the bounds.

Estimation Algorithms

Consider the signal {sn} plus noise {vn} sequence

x =s +v_ . (4)
n n n
Linear process models to represent (4)
5
Z amxn -m zbmwn-m &
yield power spectral estimates of the form
s(f) = (6)

=e32wa

where the {am,bng coefficients themselves can be de-

termined through various algorithms., Autoregressive
(AR) models and various AR parameter estimation tech-
niques have been most popular [7]. In the AR case,
the parameter estimation algorithm is particularly
simple, as it results in a set of linear equations:

1 TE
r0 r_l ‘e r_p 1 g
‘1 Ty ee- al } 0
. . . (7
r “eu r a 0
Lp ol %

whete the elements of the covarlance matrix are esti-
mated as N-1
1
r =1y
. n=0

*

Xn+kxn (8

© error Pe behaviour are shown in Figs. 3 to 10.

This is referred as the autocorrelation method which
causes inherently a windowing of the data as is obvious
from (8). This windowing can be avoided by letting the
prediction filter run over only the data set, as in the
Burg algorithm [7]. While the Burg algorithm uses a
constrained minimization to compute the predictor coef-
ficients and guarantees a minimum phase solution, an
unconstrained minimization approach results in a more
statistically stable estimate. The latter approach is
referred to as the least squares (LS) AR parameter es—
timation.

An improvement on the least~squares method of AR
parameter estimation is provided by the Kumaresan-Prony

case [8]. It can be shown that the minimum norm solu-
tion for the predictor coefficients can be expanded as:
M (e¥,h)
a= ;:%___ e. 9)
- . . et
i=1 i

where {Ai} and {Ei} represent, respectively, the eigen-

value and eigenvector set of the covariance matrix. One
can now divide the eigenspace into noise and signal sub-
spaces and express the minimum norm solution as a linear
combination of the signal space eigenvectors. This, in
effect, results in the filtering out of the noise from
the estimate.

The Capon estimate (maximum likelihood) is based
on designing a filter that minimizes the variance of
the output under the comstraint that the frequency re-
sponse at each fj be equal to a constant value. Finally

both the Pisarenko estimate and the Prony line spectrum
t+hat the

~oes ratian a

consideration s & pri ord

estimates take into priord,
data consists of sinusoids in noise. In the Pisarenko
method, the roots of the polynomials made up of the ei-
genvector of the autocorrelation matrix corresponding
to the smallest eigenvalue are used to estimate the tone

frequencies.

4. COMPARISON OF ESTIMATION TECHNIQUES

Ap existence simulation study has been carried out
to determine the probability of error behaviour of the
DIMF detector under various noise and signalling condi-
tions. In the simulation runs the tone pairs are ran-
domly selected with relative phases uniformly distribu-
ted in [-w,7] and a random twist factor in the range
of +4 to -8 dB. The tone signals are imbedded in Gaus-
sian noise and may further be contaminated by a low den-
sity impulsive noise, (i.e., one shot per tone interval),
the impulse epochs being also uniformly distributed with-
in the tone interval.

Plots of spectral estimates and probability of
In these

plots N denotes the number of samples used, p, the order
of the predictor and the contaminating noise is Gaussian
unless otherwise specified. Finally the signal samples
are obtained at a sampling rate of 8 kHz, and the tone
frequencies are selected as in Table. I.

Autocorrelation method

Plots of spectral estimates and pole configuration
using the autocorrelation method are shown in Fig. 3a.
The experiments with small predictor orders, e.g., p =
4,6,... indicate a relatively low resolution while the
signal poles appear well within the unit circle. As
the predictor order is increased, the “signal" poles
move onto the unit circle while the "noise™ poles are
lined up uniformly within the unit circle as they try to
model the flat noise spectrum. The probability of error
behaviour is shown in Fig. 4 where we see that a model
order at or above p = 16 yields very satisfactory results
(N250). In fact one has P = 0.5 x 10-5 at 7 dB and at

10 dB the projected error is less than 0.5 x 10 7. Fig.
5 illustrates the effects on Pe of the number of samples

used and also that of the predictor order, p. Here one
can observe the threshold behaviour of the nonlinear es-
timator. In Fig. 6 we have illustrated the effects of
the frequency separation and the relative phase. It is
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of interest to note that Pe behaviour follows the fluc~-

tuations of the Cramer-Raoc bounds as in Fig. 2, with
the relative phase. We have scaled the frequency axis
by a factor ¢, thereby obtaining different tone fre-
quency separations. ¥For a>1.3 we observe that the
probability of error approaces that of a single tone;
however as the tone frequencies get closer to each
other, e.g., @<0.7, the sinusoids start interacting
so strongly that the detector becomes unable to make
correct decisions.

Burg and LS Method

Sample spectral plots with LS algorithm are
shown in Fig. 3b. The signal poles are located very
close to the unit circle, while the noise poles seem
to be widely dispersed around the unit circle. Occa-
sionally some noise pole may wander onto the unit cir-
cle causing a spurious peak. Despite the higher re-
solution obtained the probability of error behaviour
with both the LS and Burg techniques has been disap-
pointing as illustrated in Fig. 7. Apart from the in-
creased statistical instability resulting in larger
twist values and more deviation in the peak positions
the poor Pe performance is, ironically, mostly due to

the very high resolution of these spectral estimates.
Indeed the DFT grid in (6) for, e.g., 1024-point trans-
form is only 8 Hz while the 3 dB bandwidths of the
spectral peaks are fractions of a Hz. This problem

is somewhat alleviated by windowing the predictor co-
efficients with an IIR window (e.g. sinwBt/7t) [9],

the choice of the smoothing aperture is not very cri-
tical and values of B from 12 to 32 Hz seem appropriate.

Kumaresan-Prony Method

The Kumaresan-Prony method reduces the effects of noise
significantly as shown in Fig. 3d, where the noise
poles are now much more clustered. The peak-background
separation appears to be often less than the other
autoregressive schemes and the Pe performance does not,

improve significantly over the LS method, mostly be-
cause the problems that affect LS technique are also
present with this method.

Prony and Pisarenko Method

Both of these techniques yield line spectra, hence
poles located entirely on the unit circle (Fig. 3e).
However both techniques appear extremely sensitive to
noise and in particular the Pisarenko technique to the
finiteness of the data. Indeed with the Pisarenko me-
thod, acceptable Pe figures could be obtained only

with sample sizes greater than 1000! With the Prony
method it was useful to work with a predictor order
above the actual signal; in fact at 20 dB SNR, the
probability of error decreased by three decades as p
was chosen 6 or 8 as compared to p=4 which is the num-—
ber of complex exponentials. While going beyond p>10
did not pay off, even for p=6,8, the spurious harmon-
ic(s) would show up in the other tone regions, thus
complicating the detection problem.

Comparison of Results

The comparative probability of error behaviour
of a DIMF receiver using nonlinear spectrum estima-
tion techniques is shown in Fig. 8, while Fig., 3 shows
how the P improves with increasing number of data sam-
ples. Thé autocorrelation method performs considera-
bly better than all other techniquesjin fact it is the
only technique that yields acceptable error probabili-
ty. It is on interest to note in Fig. 9 how slowly
the performance improves by increasing the number of
samples used with such techniques as Prony and Pisa-
rento.

Impulsive Noise

In the presence of impulsive noise the Pe per—

formance deteriorates dramatically. For example, at

Pe =10 , the receiver incurs a loss of 15 dB

SNR in the presence of impulsive (equal amounts of shot
and Gaussian noise) noise as compared to pure Gaussian
noise. When the incoming signal is processed through a
zero~memory nonlinearity (e.g., a clipper)

| output
'

———/[T
¢
there is significant improvement up to a point where
specifications can be met. For the clipper nonlinearity

shown above, the performance does not seem to be very
sensitive to the threshold setting, through Tc set 3 to

input

5 dB above the signal level gives the best results.
CONCLUSIONS

DIMF receivers based on nonlinear spectral esti-
mation algorithms have been investigated. Despite their
superresolution property these algorithms have not been
performing satisfactorily in typical telephone environ-
ments. This is mostly due to the fact that the estima-
tion algorithms are inherently very sensitive to noise.
We observe that the superresolution property can turn
out to be a handicap in an AR based spectrum analyzer
as the DFT grid can miss the peaks. We note also that
the autocorrelation method of AR parameter estimation
is an attractive alternative for DIMF receiver imple-
mentation.
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