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RESUME

Les radars avec 1'emploi des antennes "phased-array"
devient de plus en plus intéressantes & cause des avan
tages qu'ils présentent en comparison des radar conven
tionnels. En particulier 1'usage d'un array a balaiage
&lectronique avec un essai séquentiel & rapport de pro
babilité (SPRT) pour la découverte des cibles, permit
un appréciable &pargne de puissance au de temps, comme
on a démontré en litérature. Toutefois, malgré les
nombreux travails sur les methodes séquentielles par
Ta découverte des cibles avec les radars, i1 n'existe
pas & présent une analyse détaillé des techniques pour
1'évaluation angulaire.

Ce travail a pour syjet 1le probliéme de 1'&valuation
angulaire des cibles d&couverts au moyen des radars
SPRT & balaiage électronique. Dans la prémiére partie
nous avons calculé les limites de Cramer-Rao pour
toute évaluation angulaire non polarisde. Ensuite nous
avon analysé 1'évaluation & maximum vraisemblance de
la position angulaire du cible dans le cas particulier,
mais trés intéressant, ol le pas du balajage est &gale
a la moitié de 1'angle d'ouverture & -3 dB du diagram
me de rayonnement., Nous avon complété notre &tude avec
une analyse numérique qui montre que la technique d'é-
valuation proposée est trés efficient.

SUMMARY

Phased-array radars have increasing interest for the
advantages achievable with respect to conventional
radars. In particular the use of electronically scann
ed array in connection with a sequential probability
ratio test (SPRT) for target detection allows appre-

" ciable power (or time) savings, as it was pointed out

in the technical literature. However, despite the
numerous papers on sequential methods in radar detec-
tion, a detailed analysis of angular estimation is
not available.

This paper deals with the problem of angular estima-
tion of targets detected by means of the SPRT in phas
ed-array radars. Firstly, we derive and discuss the
Cramer-Rao bounds of any unbiased angular estimate.
Secondly, we analyse the maximum Tikelihood estimate
(MLE) of the target angular position in theparticular
but significant case where the scan step size isequal
to half the -3 dB beamwidth. The analysis is completed
by numerical computation which shows the effectiveness
of the proposed estimation technique.
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1. INTRODUCTION

Phased-array radars have increasing interest for the
advantages achievable with respect to conventional ra
dars. Basically, these advantages are due to the use
of the electronically steered array as an adaptive sen
sor of the search volume. This aim can be achieved by
acaptively sharing the total time and/or energy among
the search directions. In addition we can have an adap
tation of the radar functions during the time assigned
for a specific purpose. Modern studies on multifunc-
tions phased-array radars are devoted to fully exploit
the capabilities offered by this type of antenna.

As an example of the first type of adaptation we
mention the use of a sequential test for target detec-
tion. In a sequential procedure the test length s a
random variable, whose value depends adaptively on the
signal-to-noise ratio (SNR) of the received waveform.
Among the sequential tests, the sequential probability
ratio test (SPRT) is particularly attractive, owing to
its optimality properties /1/. Since the pioneering
work of Wald /1/, many papers has been written on the
analysis of the SPRT applied in radar target detection;
recently this test was used with success in an experi-
mental multifunction phased-array radar project /2/.

A problem which arises in phased-array radars is to
obtain an accurate estimate of the target angular posi
tion; in fact a rough estimate based on the mean value
of the successive angular coordinates of the antenna
boresight is not reliable because of the usually large
scan step size. If a SPRT is used for target detection,
it is natural to expect an improvement in the angular
estimate by utilising properly the test length that
gives information on the SNR. Notice that this approach
is not possible in conventional radars where the detec
tion test length is fixed. The problem of angular accu
racy in conventional radars has been extensively treat
ed in the technical Titerature, both for analog and
digital signal processing. However, despite the great
number of papers on sequential target detection,little
effort was devoted to the angular estimation problenm.
The only relevant papers on this topic are by a team
of russian researchers /3,4/, which present poor re-
sults not suitable for comparison and design purposes;
however their work is an useful starting point for
further developments.

The aim of this paper is twofold. Firstly, we deri
ve and discuss the Cramer-Rao bounds of any unbiased
angular estimate in radars which use a SPRT for target
detection. Secondly, we analyse the maximum likeli-
hood estimate (MLE) of the target angular position in
the particular but significant case where the scansten
size is equal to half the -3dB beamwidth. The analysis
is completed by numerical computation which shows the
effectiveness of the proposed estimation technique.
For clarity of presentation we grouped in section 2
the necessary mathematical preliminaries on SPRT and
the definitions used in the sequel of the paper.

2. PRELIMINARIES

Target detection and simultaneous estimation of the
azimuth 6, may be accomplished with an accuracy better
than the antenna mainbeam traverse aperture ¢ if the
search volume is scanned discretely with a step
MB<o/2, so that a target has M=0/AB32 opportunities to
be detected. An application of the Tobe switching
concept, developed in the earliest of the tracking

radars, suggests to use a step AB=a/2 and to determine
the ratio between the amplitudes of the signals receiv-
ed from two noncoincident antenna patterns so that all
the parameters are removed,except angle of arrival. In
particular if ¥y and ¥, are the MLE of the SNR's at
the decision instants of the SPRT,relevant to two conse
cutive beam positions 8y and 8p,the target bearing 64
may be estimated by solving the equation:

(1) /9,=0(8,-8,)/9(8,r0/2-8,)

where g(8) is the normalized one-way traverse power ra-
diation pattern. Thus the estimate 94 is determined
through the knowledge of the power radiation pattern,
that we assume to be expressible in factorized form
g{8)w(d): here 8 and ¢ are the azimtuh and elevation
angle. In Sect. 3 we will show that the solution of eq.
(1) gives the MLE of 8¢. -

In this paper we will consider two detection techni-
ques: coherent and incoherent square-law detection. For
many radar situations where coherence is an unlikely hy
pothesis the square-law detector is commonly used becau
se it is optimum for all SNR's in the case of pulse-to-pul
se Rayleigh fluctuating pulse trains; besides, it is ajf
so optimum for constant cross-section radar targets
when the SNR is Tow. .

In order to evaluate the accuracy of the estimate 6%,
we need some results from the analysis of the SPRT. The
approximated analysis by Wald /1/ is not always appli-
cable 1in radar detection problems, so we must resort
to an exact analysis which we carried out in detail in
report /5/. Here, after a brief summary of the SPRT
structure, we recall only the significant formulas re-
levant to the above estimation problem.

The SPRT is defined by: observe an infinite sample
sequence of independent and identically distributed (i.
i.d.) random variables {v;} , and at stage k1 decide
between two simple hypotheses H0 and Hy according to
the following rule:

- accept H  if Z<B,

- accept Hy if I A,

- continue by observing Vit if B<Zk<A,

where the stopping bounds are two real numbers A>0, B<0
and Z, =3 1n[p(vi|H])/p(v|HO)] is the Togarithmic Tlike-
Tihood ratio at stage k. The total number of inputs
Vi.e.Vp observed before coming to a decision, i.e. the
length N of the test, is a random variable.

In radar sequential detection the receiver must deci-
de if the raw data vy,normalized with respect to the
standard deviation of the noise and received from a set
range resolution cell, either contain random noise only
(hypothesis HO) or contain random noise plus signal sam
ples s, (T) (hypothesis Hy). The vector I represents a
set of unknown but nonrandom parameters specifying the
signal.A "standard" value I'g must be assigned to T in
order to determine thelikelihood ratios; Ty is specifi-
ed through the requirement that the standard signal is
detected with prefixed probabilities of false alarm
Pep» and of detection P.. If the hypothesis Hy is compo
site, the test is defined in terms of the average like-
Tihood ratio. The optimum character of SPRT derives from
the following properties: the SPRT is closed (the test
terminates with probability one) and requires on the a-
verage no more observations than any other test procedu
re having equal or smaller probabilities of error (fal-
se alarm probability and dismissal probability).

The distribution of N and the reliability characteri-
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stics of the sequential procedure can be determined
through the probabilities that at the n-th stage the
Togarithmic 1ikelihood ratio exceedes the decision
thresholds A and B. N is a discrete random variable
which can assume only positive integral values with
probability mass function:

(2) P(N=n|T)=P(Z >A|T)+P(Z, <B|T)=
B

[ % (z|r)dz+[°f

-

(z|r)dz .

where fz (z|T) is expressed by the recursive convolu-
tion:

(3) 1, (2In)= fa 2

(z|T)=f(z]r)

(a]T)f(z-a|T)da  n>1

and f(.) is the probability density function (p.d.f.)
of the i.i.d. random variables X;=Z;-Zj.1 denoting
the likelihood ratio's increment. Eq. (3) signifies
that the n-th stage is reached only if no decision is
made at the (n-1)-th stage. Thus Pgp and Pp are given
by:

(4) P

(- -]

B
DI ffz (2]r,H,)dz ,

nz4 o N

- .
5) P | f, {z|T,H, }dz s
() Py = 3 | 7 (2ITsAy)
the average number of observations required to termi-
nate the test (average sample number) and its variance
are:

(6) N:E{N}=f:np(n=n|r) ,
(7) oo 3 (n-W) 2P (N=n|T)

nsdq
3. MAXIMUM ANGULAR ACCURACY
In this Section we derive Cramer-Rao bounds on the
error variance of any unbiased angular estimate. Our
approach follows closely the one outlined in /3/. Let
us define:

vij= i-th observation made when the antenna is poin-
ting to the j-th direction;

M 2 number of adjacent directions where the target
is present;

N, 4 number of observations in the j-th direction,
J A required to end the test;

8. = antenna boresight angle corresponding to the

J A j-th direction; ;

gj =g(0.-8, )= normalized traverse antenna one-way
A power ‘pattern;

j=Y g.= SNR relevant to the j-th direction, where

YJ is the SNR in the maximum gain direction;
Yg = s%andard SNR for which the SPRT is designed.

Let us represent by TI= (et,y )} the vector of the un-
known parameters to be est1mated We are concerned
with a multiple parameter estimation problem, forwhich
some general results are available.

The computation of the Cramer-Rao bounds /6/ requi-
res the knowledge of the logarithmic Tikelihood fun-
ction which, in the hypotheses of i.i.d. variables,
becomes: "

(8) A(T)= Z Z I p(v;5I1),

where p(VIJIF) is the cond1t1ona1 p.d.f. of the

observations. In order to proceed we need an expression
for p(vijlr) which depends on the detection model consi
dered. According to the discussion in Sect. 2, the com-
mon models used are:

1. Coherent detection

2. Incoherent detection with nonfluctuating target

3. Incoherent detection with Rayleigh fluctuating
target.

The probability density functions of v
ly 17/

9) 1.
(10} 2. p(v

(11) 3. p(v

jare respective

p(vi.let,yo) (1/v2r)exp[- (v i I /2]

O(VUYJ/ Y)

2 —
/vy ZYS)}GXP[‘Vij/z(HYj/zYs)].

[9 .Y )=V"exP[_(vij+Yj/Ys)/2]I
IQt,Y )"ﬂ

Notice that in the above equations the dependence on 8
is throught v:. In addition eq. (11) was obtained by
averaging w1tﬂ the probability density function p(y )=

(1/ys)exp( Y /Ys) which corresponds to Swerling II
fluctuating mode1 /7/. Therefore, yg represents the stan
dard average SNR., Finally it is worthy to recall that
the observations v, in eq. (9) are the sampied output
of a matched filter, while in egs. (10) and (11) they
are the sampled output of a matched filter followed by
an enveiope detector.

The derivation of the Cramer-Rao bounds in case 2 is
a quite formidable task;however asymptotic results can
be obtained from the solution of cases 1 and 3; in
fact if the SNR is very small the probability density
function (10) can be approximated by (11) and if the
SNR is very large the probability density function (10)
can be approximated by (9). For these reasons, let us
consider cases 1 and 3 only. This is not a serious 1i-
mitation from a practical point of view because, as it
was pointed out in Sect. 3, the optimum receiver in ca
se 3 is a good approximation to the optimum receiver in
case 2.

For any unbiased estimate the minimum variance of the
error is given by the Cramer-Rao inequality /6/. We have:

1. Coherent detection

=2 _ 2,0 27 . 2
(12) 55, (com=vo/[ry( 2 95 Ky (-0 )] .
with "

N 2 Moo= oM 2
(13) oc—(g ngJNJ) /[( Z JNJ)(,);‘ g

14 .

and gj—(dgj/det),

2. Incoherent detection (Swerling IT)

(14) cgt(incoh)=§§/{y (1-p; )[2 ng JNJ/(“'Y /2Y )2] .
[ 3g No/7 (14 /2Y§)2]2

J=1 J
5 g"ﬁ /(]+YJ-/2Y ][z > g NJ/(1+Y 2175) 2y

(15) o?

Eqs. (12-14) have been numerically solved with the fol

Towing assumptions:

- the normalized travgrse power pattern is gaussian:
g(8)=exp [-2.77(8/ )

- the SNR in the max1mum gain direction is the standard
SNR (YO_YS )
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- the scan step size equals o/2 and o/3 corresponding
respectively to M=2 and M=3.

Some results obtained through the method developed in

/5/ are reported in Figs. 1 and 2, relevant respecti-

vely to cases 1 and 3. From the above figures and a

number of other numeérical results,we can make the fol-

lowing remarks:

- the normalized minimum standard deviation of the an-
gular estimate increases as the SNR increases in the
incoherent case,in opposition to the behaviour relat
ed to the coherent case; this apparently surprising
result can be explained as follows. As the SNR
increases the average number of observations decrea
ses so that, in the incoherent case, the estimate ¢
becomes poorer, due to target fluctuations. Conse-
quently the estimate 8y becomes poorer too;

- even if it is not apparent from Fig. 2, the normaliz
ed minimum standard deviation has an upper and lower
bound; they are equal respectively to 0.255 and 0.06
for 8¢/a=0.25 and M=2;

~ the accuracy in the incoherent case is better than
that attainable in the coherent case for low SNR's;
this occurs because the average number of observa-
tions is higher in the first case /5/.

4, MAXIMUM LIKELIHOOD ESTIMATE

In order to obtain an estimate of 8¢, suitable for
practical implementation, let us consider the MLE,be-
cause of its optimality characteristics. A general so-

lution of the problem, when M directions are considered,
is very hard and does not lead to a simple solution /4/.

Thus in this Section we will deal with the case M=2;
this is not a severe limitation since high values of M
are unpractical, both for the increase in the search
volume scan time and for the difficulties to obtain
very small scan steps. In addition the maximum accura
cy for M=2 is satisfactory. Maximum 1ikelihood estima
te of the target bearing 84 and of the signal-to-noise
ratio § are obtained by solving the system:

an/a8, |5 SO ey |§O=O ,

which can be written as:

2
2;{%9—t Z]np[v 5175 0r00,)11=
3= Azd
SR
é{_——aYo é n p[v y 08110

It is not difficult to show that system (16) is equiva
lent to the following system:
3 e
Y Z

T Pl I (g8

a -
o 2 I plvy, lvy(y,.8,)]=0

In order to solve system (17) it is necessary to speci
fy the p.d.f. p[.] . In the case of coherent detection
with a straightforward computation we obtain:

(18) Zv” =n, vy g(e e ,Z'v12 2»/ ( )

Thus the so]ut1on et Of system (18) must sat1sfy the
equation:
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Fig. 1: Maximum angular accuracy (coherent detection)
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- ne 2 2
9(0,-9,) (Zv.)/n
1 t 424 1] 1 1
(19) — = I
9(8,-6,) Z Vip) /n, Yo
Notice that v =( ZZ vy 2/n2 is the MLE of vj

In the case of Ray1e1gh fa&1ng target detect1on we
obtain by a similar procedure

a(8-8) (; 1/n -2 v
9(9,-8,) (3 %,

4

(20)

where again y ( Zf j/Nj }-2 represents the MLE of

. Notice that eqs. (15) and (20) coincide with equa
t1on (1), which was suggested by intuitive considera-
tions.

Egs. (19) and (20) show that v are obtained from
all the data {Vij} observed beforé deciding but they
may be profitably extracted from the integrated value
of the logarithmic Tikelihood ratios Zn4 » Z. when
the SPRT's are stopped. In fact,wehave:

(21) Zv /n

txd

Ny
Zn /(2n )+ /2 .
3

n;
2 .
(22) évij/nj-(1+1/ys)[znj/njnn(ms)]
For a gaussian traverse power pattern we have both in
coherent and in Rayleigh fading target detection:

(23) 8,=(0,+0,)/2 + [a2/5.54(9 -8,)] In (3;/7,)

The accuracy of maximum likelihood estimate 9t can be
evaluated by its mean E{8;}and the error variance oZ.
Since these parameters depend on the statistical beha
viourof the SPRT, numerical computation needs. It will
be carried out through the following steps:

- compute the stopping bounds A and B to obtain the
required P, and P_, for the standard signal-to-
noise ratio vy (eqs.(3-5))s

- compute the probability that the SPRT ends at the
n-th stage (eq. 2);

- compute E{yi} and o¢2. through the conditional
i

expected values: J
E{Y 1= 25 E{Y [N=n}P(N=n) .
N=4
n; .
= > oz{y.IN=n}P(N=n)
Yj W J

We point out that azimuth estimation takes place under
the condition p(Hy)<1 (the signal is not surely known
to be present); thus detection-directed estimation is
assumed (Fig. 3).

The results, summarized in Figs. 4, 5 and 6, suggest
the following remarks:
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Fig. 4: Normalized bias of the angular estimate
(coherent detection)
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Fig. 6: Standard deviation of the MLE error, normalized
with respect to the median estimate

- the MLE of ét is biased except for 84/u=0.25; the
bias level, which is an odd function of 8y, for
0<B4<0.5a, is caused by different bias levels.in the
estimates of yy and yp. The bias effect derives from
the estimation procedure used; in fact,the estimate
is obtained under the condition that the target has
been detected; _

- the bias level depends on vg and N for fixed 6y
the conflicting effects of the decrease in the SNR
and of the increase in the average number of obser-
vations as 84;/o0. approaches zero cause the anomalous
behaviour of the curves in Fig. 5;

- the comparison between Fig. 6 and Figs. 1, 2 shows
that, for SNR values of practical interest, the error
of MLE has a standard deviation slightly Tower than
the Cramer-Rao bound,because of the bias.

It is of interest to compare the MLE with the median
estimate (0,+6,)/2 obtained from eq. (23) by setting
the correction term equal to zero, The error variance
05 of the median estimate has been computed by suppo
sing 8¢ uniformly distributed in the interval (0,qa).
The result is shown in Fig. 6: in the case of incohe-
rent detection it is apparent that the improvement
attainable by the MLE decreases as Y¢ increases. We
have no significant inprovement for high SNR's; this
means that the correction term in eq. (23) gives little
information on target bearing owing to the poor esti-
mates of ! and Yp-

5. CONCLUSIONS

The angular estimation of radar targets detected by
the sequential probability ratio test has been analy-
sed. The algorithm for the maximum 1ikelihood estima-
tion has been derived, assuming a scanning step equal
to the half power beamwidth. The results obtained by
numerical computation lead to the following main con-
clusions:

- the maximum likelihood estimate of the target bea-
ring is biased by a low Tevel with-respect to the
angular mainbeam aperture. Thus the accuracy of the
estimate approaches the Cramer-Rao bound for Tow
signal-to-noise ratios, which are of particular in
terest in many practical situations;

- an angular estimate with an error standard devia-
tion of the order of one tenth of the antenna aper-
ture may be obtained with a signal processing which
makes use of the final values of the statistic of the
detection test; thus it may be easily implemented.
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