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RESUME SUMMARY

In a passive sonar system, a target may be
localized using the differential-time delays of the
target's signal arrivals at spatially separated
sensors. The accuracy of this time delay estimation
(TDE) procedure depends on the signal-to-noise ratio
(SNR), observation time, effective bandwidth, and

center frequency of the signal and noise and their
spectral characteristics. Here we investigate the
effects of the signal and noise characteristics on
the lower bounds on TDE and on target localization,
i.e., bearing and range estimation capanility. We
also investigate the effects on the nonlinear trans-
formation from TDE to bearing and range estimation.
The analysis results indicate that the lower bounds
on time delay errors depend heavily on the signal
and noise characteristics. However, the lower
bounds remain constant if the signal and noise
spectral slopes are the same and all other para-
meters such as SNR, observation time, and bandwidtn
are held constant. The bias due to the nonlinear
transformation introduced in bearing estimation is
negligible, but the bias in range estimation is
always positive and is proportional to the cube of
the true range and inversely proportional to the
square of the effective base leg length, The root
mean square error of the range estimate is evaluated
in terms of the true range, the base leg lengtn, the
variances of the bearing errors, and the minimum
variances of the range errors.
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INTRODUCTION

In a passive sonar system, a target may be
localized by using the differential time delays of
target signal arrivals at spatially separated
sensors. The localization of a target involves
estimating its bearing and range. As shown in
Figure 1, the difference in arrival times of the
target's signal at A and B and at B8 and C determines
the bearing angles, e] and e2. Once o1 and
e, and the array separations, Ly and Ly, are
known, the range of the target can be 5etermined
(see Figure 1).
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Fig. 1. Target's bearing and range estimation
The time difference utilized in bearing
estimation is obtained by cross-correlating the
received waveforms at two spatially separated points
(Figure 1: A,B and B,C) and measuring the time
displacement of correlogram peaks (Figure 2). The
received signals are corrupted with noise, causing
an inaccuracy in the measurement of correlation
peaks that affects the bearing angles, o] and
o2, and range estimates. The unknown time
difference or differential time delay is estimated

as shown in Figure 2,
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Fig. 2. Time delay estimation using
generalized cross correlator.
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The accuracy of the differential time delay
estimation (TDE) depends on the signal-to-noise
ratio (SNR), observation time, effective bandwidth,
and center frequency of the signal and noise and
their spectral characteristics. In this paper, we
investigate the effects of signal and noise spectral
characteristics on the lower bounds on TDE and,
hence, on bearing and range estimation capabilities.
Furthermore, we also investigate the effects of the
nonlinear transformation from TOE to bearing and
range estimation.

TIME DELAY ERRORS

Hahn1 has shown that the variance GS of a TDE
procedure that is assumed to be unbiased is
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where

S(w), Ni(w), and Na(w) = the power density
spectra of signal s(t), noise nl(tg, and noise
no(t), respectively;

T = observation time in seconds;

f = frequency in Hertz; and w = 2xf;

H(w) = the voltage transfer function of the
prefilter (Figure 2).

The variance of the TDE is minimum when the
filter power transfer function satisfies
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Substituting the value |H(w)]? into equation (1)

yields?»3
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Now, if the signal and noise spectra are constant
over the band extending from f] to f2 Hz or the
spectral fall-off rates are equal, then equation (3)
may be written as

1+ SWR; + SMR,
TSR , (4)

where

SNR1 and SNRZ = power SNR's over the band W Hz,

W2

rms ~ 0 2
12f

Hz, W= f, - f Hz

1

Therefore, the standard deviation of the time errors
is given by

1 1 1 1 + 2 SNR
9= 7n 5T frms SRR ’ SNRl = SNRZ = SR (5a)
L1 1 1 1
T T TR for SNR << 1 (5b)
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11 1 1
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, for SNR >> 1. (5¢)

The consequence of different and unequal signal
and noise spectral fall-off rates on op are described
elsewnhere. 4,

Notice that equation (5) shows that op is
independent of the true differential time delay and
depends only on the SNR, the observation time, and
the signal and noise characteristics.

TARGET LOCALIZATION ERRORS

Target localization involves bearing and range
determination. Once the differential time delays
are known, the bearing angles, o] and ep, are
calculated as follows:

CDl CDZ
Cos &) = T » and cos 8, = T~ » (6)

-
3]

where

D1 and Dy = the differential time delays
of target signal arrivals at sensors A and B and B
and C, respectively;

¢ = the sound speed; and

L1 and Lp = the lengths of the baseline
{Figure 1).

If o1, &2, and L} are known accurately, then
the ranges, R, of the target can also be determined

accurately.

Now let Dy = Dgy *+ 8Dy, where Dpy is
the true differentia} time delay and §Dj (<< Dpj)
is the random error in the time delay. We assume
that the mean time delay error is zero; i.e.,

81 = 0 and EI = 001 .

We shall calculate the bias in the estimation of
8] {similar arguments hold for o) as a function
of L1, ep1, and op], where eg1 and op] are the
mean bearing angle and standard deviation of time
delay errors, respectively.

Expanding the differential time delay, D1,
about Dg1 using a Taylor series, we see that
the expected value of the bearing angle estimate
o1 is

2 2
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Therefore, the bias in the bearing angle at 251 is

%1 E[‘A"l] - 901
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Similarly, the variance of the bearing angle
errors using a Taylor expansion can be written asb

2
o2 - dey 2
01 = 35; D1

i) 2
=\L sine on1
VTl 01/ -

2
2 C 2
01 =7 .2 D - (10)
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Therefore, the standard deviation of the bearing
angle error is

c
00,y = T —— C . (11)
01 Lls1n %1 D1

The bias egj may be expressed in terms of the
variance of bearing errors. Equation (9) may be
simplified as follows:

2
o - _(c °n1 ) 1 €08 8y
Bl L ST 8y; 7 sin °01

2 cot o '
~(oog) — 2 - (12)
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Notice that the bias (equation (12)) ‘error is
proportional to the variance of bearing error and
cot ep1, and is zero at broadside (eg] = 90°).

The bias could be positive or negative, depénding on
the bearing of the target relative to broadside.

The bearing angles, e and ep, are determined
from the differential time delays. Once o1 and
@2 and base leg length, Ly, are known, the range
of the target, R, may be determined as follows:

sin 81

Sinje, - &

R=L
! 2 1

sin 91

1

Ly ———— (13)
1 8, ~ 6]

when [ez - ellis very small.
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Now, if e1, o2, and Ly are exactly measured
or known, then R is exactly known. But there will
be errors in o1 and ey that cause an error in
the range estimate. is nonlinearly related to
o1 and ep for a fixed L7, and this nonlinear
relationship will cause a bias in the range estimate.

The expected value of the range ang yhe
variance of the range may be written as®»

? 2
A 1 3Rl 2 1 j3“R{ 2
E[ﬁ(el, 92)] =R +5 [E} og1 * 7 [—3;?] 052 (14)
1 2

and
2 2
2 3R 2 3R 2
op = (;91> oe1 * (aez) 992 (15)

Assuming that the average of the cross product
due to 8 and e, is zero and R is the true range,

2 2 .
o1 and ogp are the variances -of angles 9 and )5
respectively. If L1/R<<1, it can be shown that the

bias in the range estimate is
R E[fa(al, 8,)] - R
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Therefore, the normalized bias is

I 2
R R 2 2
B/R = L_2 L2 (°91 * "92) . (17)
1 sin 901

Equation (17) shows that the normalized bias
RB/R (or fractional bias range error) is propor-
tional to the square of the ratio of the true range
and effective base leg length. The bias error will
be smaller if the ratioc of true range and effective
base leg length is smaller. We have assumed in
equation {16) that cos ej<<l, which implies that
the target is located close to broadside of the
linear array (Figure 1).

Similarly, the variance of the range error is
2

2
%61
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Therefore, the standard deviation of the range error
is

2
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Theriault and Zeskind” have found similar results.

Now from equation (19)

R 2 2
GR/R =T sin e\fael T o

but
Ry R2 2, 2 21)
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2
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Equation (22) indicates that the fractional
bias range error can be determined from the
fractional standard deviation of range errors.
Theriault and Zeskind’/ have also found similar
results.

Bias in the range estimate introduces an
additional error. This bias is a function of true
range. Therefore, the mean square error of the
range estimate may not be predicted as with an
unbiased estimate via the Cramer-Rao bound.

Kendall, Stuart, and others8.9 have shown, in the
case of biased estimates, that the mean square error
of the range, R, is bounded according to

. dRg\2 ,
MSE(R) 2 (1 + W) O‘R Py (23)
where ag is the unbiased range variance. Therefore,
2\2
(R) > (1 +3 R ) o2 (24)
MSE .
= R2 /) R

Equation (24) shows that, in the case of biased
estimates, the bound on the mean square range error
can be calculated from the variance of the unbiased
estimate.
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DISCUSSION OF ANALYTICAL RESULTS

We shall now discuss the andlytical results
obtained in the previous section by means of an
example. For the example, we have selected the
signal and noise spectra to have a bandwidth of 500
Hz and a center fregquency of 1500 Hz. Further, we
have assumed that the signal and noise spectral
fall-off rates over the band are the same. The
range of SNR*s is -25 to 0 dB. Figure 3 shows the
standard deviation of the time delay error as a
function of the average SNR, with observation time
T = 20 and 60 seconds as a parameter (equation 5a).
It is seen that op decreases with increasing SNR,
as expected. With increasing observation time, op
decreases. Notice that op is independent of true
target position. The standard deviation of the
bearing error as a function of average SNR (SNRj =
SNRo = SNRay) is presented in Figure 4. Here we
have assumeg that the length of the baseline is 500
feet. The plots are valid only for a broadside
target. Away from broadside, op will increase by
a factor 1/sin e, where o = bearing angle (e = 90°
corresponds to broadside).
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Fig. 3. Standard deviation of time delay errors
as a function of average SNR.
W = 500 Hz, f, = 1500 Hz.
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Fig. 4. Standard deviation of bearing error as
a function of average SNR.
L1 =Ly = L =500 ft.

Figure 5 shows the bias in the range estjmate
as a function of true range, at broadside, 15, and
30° off broadside. Observe that the bias is
proportional to the cube of true range and is
inversely proportional to the effective base leg
length squared {L sin 8)2 for a constant SNR and
observation time. The range bias is always
positive. In other words, the true range is often
overestimated.

Figure 6 shows the standard deviation of range
errors as a function of true range at various
bearing angles. oR is proportional to the square
of the range and inversely proportional to the
effective base leg length. Therefore, increasing
the baseline would decrease the range error. For
example, the range error at a true range of 20 kyd
is about og = 2500 yards at broadside. The
root-mean-square error as a function of range at
different bearing angles is shown in Figure 7.
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Fig. 5. Bias in range as a function of time range
at SNRay = -20 dB, T = 20 sec, L = 500 ft.
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Fig. 6. Standard deviation of range error as a
function of true range at SNRz, = -20 dB,
T =20 sec, L = 500 ft.
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Fig. 7. Root mean square error as a function
of true range at SNRy, = -20 dB,
T =20 sec, L = 500 ft.

CONCLUSIONS

We have derived simple expressions that yield
the standard deviation of time delay errors as a
function of SNR, observation time, and signal and
noise spectral characteristics. Also, we have
attempted to derive simple equations that give the
bias and the standard deviation of bearing and range
estimates of the target. The bias errors in bearing
and range estimation are due to a nonlinear
transformation. The analysis results show that the
bias in the bearing estimate is proportional to the
variance of bearing errors and cot e, where & is the
true bearing angle; i.e., if the variance is known,
the bias can be calculated. The bias in the range
estimate is always positive and proportional to the
cube of the true range and inversely proportional to
the square of the effective base leg length.
Therefore, the fractional range bias, i.e., the bias
normalized with respect to the true range, can be
calculated from the range estimate variance
(unbiased range estimate). The biases in bearing
and range estimates are inherent and due to the
nonlinear transformation and cannot be removed
easily.

We have already discussed the effects of time
delay errors on bearing and range estimation of a
target. We summarize our observations next:

(1) The standard deviation of time delay
errors depends only on the SNR, observa-
tion time, and signal and noise
characteristics. It is independent of
true differential time delay; i.e., it is
independent of the actual target location.

(2) The bearing errors that include bias and
variance depend on the time delay errors,
length of the baseline, sound speed, and
true bearing angle. The bias in bearing
due to the nonlinear transformation
depends on the unbiased variance estimate
and true bearing angle. In other words,
the bias could be determined if the
unbiased variance and true bearing angle
are known. The bias is zero at
broadside. Contingent upon the true
bearing angle, the bias could be positive
or negative; i.e., the bearing could be

NUSC

overestimated or underestimated, depending
upon the true bearing. The unbiased
variance estimate depends on the true
bearing, length of the baseline, sound
speed, and the variance of the time delay
errors.

(3) The range errors that include the bias and
variance depend on the true range, length
of the baseline, and the variance of
bearing errors. The range bias depends on
the unbiased variance estimate and the
true range. Therefore, the range bias can
be simply calculated from the unbiased
variance estimate and true range. The
bias in the range estimate is always posi-
tive, which implies that the range is
often overestimated. The bound on the
mean square error can be predicted from
the unbiased variance estimate and the
true range.

(4) Owing to the inherent nature of this
target localization technique utilizing
wavefront curvature, the biases in the
bearing and range estimates cannot be
totally eliminated. However, they can be
reduced by increasing the observation time.

The author wishes to thank Dr. A. H. Nuttall of
for his helpful discussion and criticism.
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