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RESUME SUMMARY

Dans cet article on utilise la méthode de In this paper, we apply the method of projections
projection sur les ensembles convexes (appellé POCS) onto convex sets (POCS) for restoring images from
pour rétablir les images 3 partir de 1'informetion incomplete information. The method of POCS is equiv-
incompléte. La methode POCS est equivalent a trouver alent to finding a point thet lies at the intersection
un point de 1l'intersection de m ensembles convexes, of m convex sets where m is the number of a priori-
ol m est le nombre de propriétes de 1'image connues known properties of the image. We shall show how
3 priori. On démontre comment la mothode POCS est POCS is used in regtoring images from 1. incomplete
utilisée pour retsblir les images a partir de 1. Fourier-space information and 2. phase information
1'informaetion incompléte dans 1'espace de Fourier et only.

2. 1l'information dans 1'espace de phase suelement.
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INTRODUCTION

In several important practical situations it is
required to restore a signal or image from incomplete
information. The problem of reconstructing a tomo-
graphic image from partial view data is one of them.
Besides the well-known medical applications in compu-
terized tomography (CT) there is also a wide range of
nonmedical applications in meteorology, electron
microscopy, geophysics, astronomy, and oceanography
which require construction of an image from partial
information. For this reason Gerchberg-Papoulis (GP)
algorithms [2], [3], [6], and their offsprings [4],
[5] have generated considerable interest.

The method of projections onto convex sets
(POCS) [1] has a significant advantage over the GP and
related algorithms in that it enables a large number
of a priori known constraints to be incorporated in
the algorithm provided that they are formulated as
constraints that restrict the image function to lie in
a closed convex set. Not every constraint can be
viewed as a restriction in terms of convex sets. For
example the operation of digitizing a signal is not
equivalent to projection onto a convex set. However
numerous other constraints can be treated as convex
set restrictions and we shall illustrate this with
examples. Eleven signal and image constraints and
their assoclated projection operators are furnished in
[7] and many of those are of physical significance.

METHOD OF PROJECTIONS ONTO CONVEX SETS (POCS)

The basic idea in POCS is the following: Every
a priori known property of an unknown image function
feH (H a Hilbert space) is viewed as a constraint that
restricts the signal to lie in a well known closed
convex set Ci' Thus for m properties, there are m
sets Ci i=1,"2, ., m and the function f must lie in

ﬁ
i=1 C
find a point of CO given the sets Ci and the operators
P,, i=1, 2,
i

an arbitrary feH, its projection onto C
element h that satisfies.

the intersection CO = The problem is then to

., m that project onto the {Ci}. Given

is that

min| [f-y{|=|]r-n]]. (1)

C.
ye i

The restoration algorithm that "finds"

a point of CO
has the form

TPy Ppoq +-- Pif k=0, 1, 2, (2)
with fo arbitrary. More generally, we can write
T ™Tp Tpog o+ Ty k=0, 1, 2, (3)

A
where T,= 1+X,(
i i

ameter A, can be used to accelerate the rate of con-
vergence both initially and in the vicinity of solu-

Pi—l) and O<Ai<2. The relaxation par-

tion. The theoretical basis of the algorithm is given
in [7], [10]. Tn general convergence to an fECO is
weak.

Because we shall deal with space-limited objects,
defined by their reflectance, transmittance, or absorb-
tance over a region £, the functions of interest in
this study will be assumed to be members of szz(ﬂ),

the space of all functions f(x,y) square-integrable
over . The associated Hilbert space H is L2X2(Q)

with inner product and norm defined by, respectively,

e

(g,0)= IS glx,y)n*(x,y) dxdy (W)
Q

el 120 (g,e) 1/ (5)
In this paper we briefly demonstrate the application of
the method of POCS to 1) recomstruction in CT from par-
tial view data (Limited angular view problem) and 2) re-
construction of the magnitude of the Fourier transform
from phase.

g,8)]

APPLICATION OF POCS IN CT

In CT by Direct Fourier reconstruction method
(DFM), each view gives the projection data from which a
single central slice of the discrete Fourier transform
(DFT) is obtained. When all the views are obtained,
the Fourier transform plane is packed with the Fourier
data on a polar raster. After interpolation to a car-
tesian format as described in [8], an inverse 2-D DFT is
computed which yields the desired image. But in the
case of incomplete view data the known Fourier data will
be in a data cone with subtended angle of <i80°. The
following sets and associated projection operators ex-
press some a priori known properties of the image func-
tion. These are significant in CT.

1. Cl The set of all functions that vanish a*e out-
side a prescribed region S€R. Given an arbitrary feH
its projection onto Cl is realized by

£, (x,y)e8
P. f= ) >
17=%0] (xy)es (6)
2. The set of all functions in H whose Fourier

trans%ozms assume a prescribed value G over a closed
region L in the u-v Fourier plane. The projection of an
arbitrary feH onto C2 is realized by

»V) ( )
ng**{ ) s

(1
where F(u,v)=F[f(x,y)] ete. for G(u,v) and F is the
Fourier transform operator. In particular G(u,v) is
the known portion of the spectrum of f over the data
cone.

3. C The set of all nonnegative real functions in H
that Satisfy the energy constraint

Ir |f(x,y)]2 dxdy < E 8 0° (8)
Q

The projection of an arbitrary feH onto C3 is realized
by

+
>
1° El E

where £, is the real part of f, f * is the rectified
portion of fl’ and El is the energy in fl ; i.e.,
+ A Irie +)2
Q

axdy. (10}

E1
L. ¢ The subset of all functions in H that are non-
negative. The projection of an arbitrary feH onto Ch
is realized by
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£, £,>0 (£=£3+jf,)

1 7L

0, otherwise.

P,f = (11)

5. C.: The set of all real functions in H whose
ampligudes must lie in a prescribed closed interval
(a, b] a>0, >0, a<b. The projection onto C5 is
realized by the following rule:

a fl(x,y) < g
Pyt = £ (x,y)  asfy (x,y)<D (12)
b fl(x,y) > b.
A

In the above, T fl+jf2.

Simulation of Limited Angular View Problem

The simulated image consists of three nested rec-
tangles the longest being 24x32 pixels, centered on a
6hx6h pixel field; it is shown in Fig. 1. The object
is represented by a sequence, f(m,n), m=l, 2, ..., N,
n=l..., N(N=6k4) which represents the gray levels of
the mn th pixel. The gray levels are confined to
0< f(m,n)< 1 and are 0.4, 0.8, and 1.0 in going from
the largest to the smallest rectangle, respectively.
The background level is zero.

i

Fig. 1. it consists of three nested

The image:
rectangles of gray levels 1.0 (center), 0.8
and 0.4.

In our simulation a 90 degree data cone is used in all
the experiments. We now surmarize some a priori known
facts and assumptions about the image.

A Priori Constraints Actual

1) Tmage support in
rectangular region
Ax=32 pixels, Ay=2h

1) Image support confined
to rectangular region
Ax=55 pixels, Ay=5T

pixels. pixels.

2) Gray levels f satisfy 2) Gray levels f satisfy
0<£<1. 0<f<1.

3) Energg over 6hx6l 3) Energy in object is
pixel? field cannot 267.0 over the 32x2k

pixel? object field.
No energy outside.

exceed pe=p68.5.

4) Initially known spectrum
G(u,v)=F(u,v)Xc(e)h)
(Xc(e) is 90° cone).

4) Spectrum of the
image is Plu,v).

The formula used for computing energy is
i
A
E=% % f2(m,n)=267.

w=l n=1

Algorithms

The following algorithms sre implemented by a
flexible program called PROCON whose description is
given in [9].

1) Gerchberg-Papoulis (GP): The familiar G-P algorithm
can be written in compact form, for our problem, as

£y 41 PP Ty (13)
2) UNIRELAX 1: £, 41=PoP3P T (1)
3) RELAX 1: £ 41 =TpTST £ with (15)

12=l.75, X3=Al=l.9995.
Results

Figure 2 shows the reconstruction error as a
functicn of iterstion number k for GP, UNIRELAX 1 and
RELAX 1. As can be seen both UNIRELAX 1 and RELAX 1,
using the method of POCS significantly outperform the
GP algorithm,

g
g
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g
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¥
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g
g
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°
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Fig. 2. Error versus iteration number k for GP,
UNIRELAX 1, and RELAX 1.

In Fig. 3 are shown the actual restorations from
the 90 degree data cone after 30 iterations.

Figure 3 furnishes impressive evidence that methods
based on projections onto convex sets furnish markedly
superior restorations to the Gerchberg-Papoulis method.

We note that projections onto Cy and C. do not
appear in Eqs. (1k) or (15). First of all ince C Ch
it follows that P. (or T.) would be more likely to
restrict the solugion set than P, (or Th)' However
when P (TS) was actually used its affect was negligible
s0 thag we” ignored it in the results presented here.



580

THE METHOD OF PROJECTIONS ONTO CONVEX SETS (POCS)
FOR RESTORING IMAGES FROM INCOMPLETE INFORMATION

Fig. 3. Counterclockwise

original object, UNIRELAX

Restoration of the image.

from upper left:
1, GP, RELAX 1.

RESTORATION FROM PHASE (RFP)
BY POCS

The two sets of principal interest in the
restoration-from-phase (RFP) problem are

€, = {£(x) : £(x)=0, [x| > a} (16)
and
€y = {£(x) : arg[F(w)] = ¢(w)}. (17)

In words: C. is the set of space-truncated functions
and C2 is the set of all f'seH with prescribed phase.
Both Cl and C2 are closed convex sets. With P,

denoting the projection operator onto C,, it is not
difficult to show that Pl and P2 are realized by

aee{ ) i 5 &

and

Pyt ={[7(0) |coso(w)-p(w) 17, wea_ (19)
, Wed

where ¢{w) is the prescribed phase, f(x) is an arbi-
trary element of H and |F(w)|ej¢(w5 is the Fourier
transform of f(x). @ is the set given by

2 = {w: cos{¢(w)-Y(w)] > 0} (20)
and Q° by
8¢ = {w: cos[d(w)-v(w)] < 0} (21)

i.e., the complement of . As defined, P
linear operator while P, is linear.
shall use the following notation

f(X)*‘*F(w)=|F(w)|ej¢(w) is a Fourier transform (FT)

pair representing a point in CO = C1 C2.

f(x)**IFn(w)[ejwn(w) is a FT pair representing the
estimate of f£(x) at the n'th iteration.

is a non-
From now on we

Optimization of the Two-Step POCS

Let f be a point in C.. We define the error

after the n'th iteration by

f -f. (22)

We consider the per-cycle optimization of the A's. By
per-cycle optimization we mean the following: For a
given £, find le and AQm such that ||en+l!' is
minimum. This method is described in detail in [11].
In the general case when P, is a non-linear operator

A can be approximated by 1) minimizing an approximate
eXpression for the error Tle +ll|2’ or 2) minimizing
the expression n

A 2 2

1= A (2-a) | ey £ ] —||P2Tlfn—Tlfn[| (23)
which is equivalent to minimizing some upper bound of
This minimization can be done by a straight

forward scan through the range of A.. Then, having
obtained an avproximate Alm’ we compute X2m from

Re[(f-T.f , P, T,f ~T.Ff )]
- 1'n 2°1'n "1°n (2L)

A
2m 2
HP2Tlfn - TlfnII
where (x,y) for any x,yeH means the inner product in
the Hilbert space H. Since £ is unknown we use f_ to
calculate the unknown part of f. A similar technique
is used when A is determined by 1). In the case
where P, is a }Tnear operator we can show that A2m=l
and we Can obtain a closed form solution for A,

We consider two possible commutations for the kﬁ?
problem:

(a) £, =T T f

ntl 2°1°n

As alresdy stated, since P2 is non-linear we can
find A,_ by either 1) minimizing some approximate ex-
pression for the error [e + [| (not given here
because of space limitations™), or 2) minimizing I in
Eq. (23) using a scan through some range of A . A2m
can be found from Eq. (2) after calculating
A,_. When Eq. (24) is written in the transform domain
we can approximate the unknown smplitude ]F(w) by the
best estimate of it that we have namely an(w)

(v): £ = T

In this case the last operator in the cycle is
linear and it can be shown [11] that

A,_=1 ‘ (25)

2
1Pyt P P,f || Re[{f-P,f , P,f -f )]
A2m=l+ 2n 12 n > + 2'n 22n n (26)
Heypye -1 [P Pyt £ |

the last term on the right in Eq. (26) is always positive
and can be either 1) approximated by using its Fourier
transform domsin equivalent form and replacing |F(w)]

by |F (w)|, or 2) neglected. When the last term on the
right%of Eq. (26) is neglected the resulting A2m is
actually a lower bound. Results using this lover

bound (subject to it not exceeding the value of 2) is
given in the example.

EXAMPLE

The example given in this paper shows the depen-
dence of the restoration on the initialization, the
nurber of iterations and on the optimization of the A's.
The original signal to be restored from phase-only is
given in Fig. L and the results for the different cases
are summarized in tables 1 and 2. The error given in
the tables is a per-cent error defined by
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(27)

The signal to be restored is a truncated 128 point
cosine on a pedestal given by

0.540.5 cos(ﬁx/BO), x=1, ...
0o , x=51, ..., 128

In tables 1 and 2 F_denotes the initial arbitrary
value of the Fourie? transform magnitude (this is an
input to theprogram furnished by the user). Table 1
gives the results for FO=lO, and table 2 for
Fo=10exp(—w2/100), wheré w=0, 1, 2, (i.e., is

discrete).
tables are:

» 50

£(x) = (28)

The main conclusions drawn from these

* The method of POCS effectively restores the
signal even with no optimization of the A's

* The results depend strongly on the initiali-
zation Fo'

* Per-cycle optimization of the A's significantly
improves restoration over pure projections
(X1=X2=l). For the same final error and with

no optimization we need at least twice the
number of iterations that we need with
optimization.

* The order in which the operators are applied
does affect the rapidity of convergence. A
"pest" ordering procedure is not, at present,
known.

* Because of the importances of good initiali-
zation, one should attempt to obtain or use

a priori information that will get F as
close to F(w) as possible.

.54y
LR

8.28)

e. .00 8.0 N 2.00 %8.00 .00 .00 .0

Fig. 4. Original signal to be restored from

phase-only.

Table 1
F =10
[e]
Iteration A.=A,=1.0 Optimization Optimization |
17 "2
Number . for for
foe17To Ty fhe1=T1Tofy
0 79.9 79.9 79.9
1 68.1 39.2 61.3
2 60.3 26.3 ko 1
3 5h.1 21.9 b1.9
5 45,2 16.2 33.6
10 3h.2 10.7 23,2
15 28.3 T.4 7.1
20 24,0 5.3 12.9
25 20.6 3.9 9.8
30 17.8 2.9 7.6
35 15.4 2.2 5.9
39 13.8 1.8 4.8
99 3.0
Table 2
F_=10 exp [-w®/100]
Iteration X1=A2=1.O Optimization Optimization
for " for
n+l_T2T1fﬁ fn+l_TlT2fn
0 26.1 26.1 26.1
1 18.3 17.4 15.1
2 15.4 141 13.2
3 14,1 12.7 11.9
5 12.5 10.4 9.7
10 9.7 6.9 6.5
15 7.8 k.9 L7
20 6.5 3.7 3.5
25 5.4 2.9 2.7
30 b7 2.2 2.1
35 4.0 1.7 1.6
39 3.6 1.4 1.3
CONCLUSTONS

In this paper we discussed the applications of the
method of POCS to 1) CT image restoration and 2) the
restoration-from-phase problem. In general the method
allows for any number of a priori known image con-
straints to be incorporated in the algorithm provided
that these can be associated with convex sets. We dis-
cussed methods of approximately optimizing the relaxa-
tion parameters and showed thereby that a significant
improvement in performance can be obtained. This
algorithm has the property of guaranteed convergence
(strong convergence in the finite-~dimensional case)
with and without the use of relaxation parameters.
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