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RESUME

La plupart des publications qui con-
cernent le boucle 2 verrouillage de phase
(PLL) &tude le comportement de 1l erreur de
phase cyclique. La solution en régime per-
manent-de 1°équation de Fokker—Planck (F/P)
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pour <ce prcbléme est connue. Une approche
usuelle etend cet étude 3 la droite réelle
en representant le processus d erreur par
17addition d'un processus cyclique et un
processus de comptage. On ne trouve pas
dans la littérature des &tudes permettant
conclure de la validité de cette decomposi-
tion. 1Ici, on 1lessaie en comparant la
densit€ congruente resultant avec la solu-
tion directe de l”é&quation de F/P sur la
droite. Aussi, on analyse l”évolution de
l”enveloppant de la densitd a vis 4 obtenir
information sur le processus de comptage.

Ce travail present 1l integration numé-
rique directe de l’équation de F/P sur la
droite réelle. Contrairement a la solution
cyclique le domaine de la fonction densité
de probabilité du processus d erreur n’est
pas bornée. En plus, parce gue la solution
permanente est nulle partout, le probléme
devient un probleme transitoire. Cet ex-
posé€ present un algorithme numérique
d’integration sur la droite. L”“algorithme
exploite la structure du problame pour re-
duire le volume de calcul. Le nombre de
points sur laldroite est augmenté& adapta-
tivement autant que 1 horizon temporel aug-
mente. Une analyse de convergence compare
des méthodes numdriques alternatives se ba-
sant sur trois restrictions qui é&tablient
des rapports entre: i) le pas temporel et
les parametres statistiques (les coeffi-
cients de 1°équation aux derivées parti-
elles); ii) le pas spatial et les paramé-
tres statistiques; iii) les deux pas.
Dans le cas etudié, on verifie gue pour la
méthode explicite et l"algorithme de
Crank-Nicholson la troisiéme condition est
la plus restrictive, &tant trivialement sa-
tisfaite pour la méthode totalement impli-
cite. On a conclu que pour certains va-
leurs des paramétres la méthode de
Crank-Nicholson conduit a une solution non
positive, tandis que la méthode totalement
implicite n“offre pas cette difficulte,
&tant celle gqu’on a mis en oeuvre.

SUMMARY

The work usually reported on the lit-
erature on the Phase Locked Loop (PLL)
foccus attention on the cyclic phase error
behavior. For this problem, the steady
state solution of the associated
Fokker-Planck (F/P) equation is known. The
common approach to extend to the real line
the study of the PLL error process is to
decompose it as the sum of a cyclicized
component and a counting process. No con-
cluding evaluation of the validity of this
decomposition exists in the litterature.
Herein, it is assessed by comparing the re-
sultant congruent density with the direct
line solution of the F/P equation.This en-
tails the study of the F/P equation on the
real line. Also, to obtain a feeling for
the statistics of the counting process, the
evolution of the line density envelope has
been analysed. ’

The present work carries out the di-
rect numerical integration of the F/P equa=-
tion on the real line. Contrasting with
the cycliec solution, the support of the
probability density function of the error
process 1is now unbounded (the entire real
line). Also, the steady state solution
being the trivial one, the line problem be-
comes intrinsecally a transient problem.
The paper describes an algorithm for the
numerical line integration. The algorithm
explores the structure of the problem to
reduce its computational burden. It adap-
tively increases the spatial grid as the
time horizon increases. A convergence anal-
ysis compares alternative numerical meth-
ods, based on three restrictions which re-
late i) the temporal increment with the
statistical parameters {(coefficients of the
pde) : ii) the spatial increment with the
statistical parameters; 1ii} the temporal
and spatial increments. For the case under
study, it turns out that for the explicit
method and the Crank= Nicholson algorithm
the third condition is more restrictive
than the other two, while being trivially
satisfied for the completely implicit meth-
od. 1t is concluded that for certain pa-
rameter values, the Crank-Nicholson method
incurs into problems of nonpositiveness of
the solution. It is also shown that the
completely implicit method does not experi-
ence these problems, being the one imple-
mented. = The numerical study is also used
to assess the decomposition.
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I - INTRODUCTION

The phase process assumed here is de-
scribed by the stochastic differential
equation

dx{t)=dB{t)

(1)
x(0)=0

where B(t) is a zero mean

with variance parameter d.
The observation model is

dy(t)= [sin{x(t))] &t + dn1(t1
(2)
cos (x(t)) dn, (t)

Brownian motion

where n{t) is a zero mean Brownian vector
process independent of B(t) with covariance
matrix ri, ti

The estimate given by the PLL
fies

satis-

Ax(t)=K[sin(x(t)-R(t))-dw(t)] (3)

where

A
dw(t)=dn, (t)cos(x(t))=dn, (t)sin{k{t))  (4)
and
k=Vqg/r (5)
The phase error
e (t)=x(t)-k{t) (6)
is given by
de{t)=-Ksin{e{t) )dt—Kdw{t)+dx(t) (7)
Following {1], it can be shown that
w{t) 1i1s correctly modeled, in the bandwith
of interest, by a Brownian motion with var-
iance rt. The phase error is a Markov proc-
ess and its transition probability density
function (tpdf), ple,t:eq:ty)!?) satisfies
the Fokker~Planck equation
ép/ot= d(pKsine)/de+{(1/2) (K2r+q) §%p/de?  (8)
subject to the boundary conditions
plfow,t) = ¢ (9)

and the initial condition

ple,t) = é(e) (10)

(1) I, stands for a 2zx2z identity matrix

(2) For simplicity we use
p=pl{e,ti=pl{e,t;eq.tg)

In some problems, we are only con-

cerned with the so0 called cyclic phase
error defined by
e{t)={e(t))modzn (11)
with density
+o0
B(3.t)= /, p(&+zkn,t) ,-n<d<m  (12)
k=-00
which satisfies Eq.(8), with (9) replaced
by
B(-7,t) = B{n, t)
(9a)
0p/og | = gp/Je
S=-n e=n

This equation has a steady state solu-
tion given by (see [1])

B(&) = explacos)/2nifa) (13)
where
a= 1/\ar (14)

is the signal to noise ratio in the
with of the loop.

It is easy to show that the density of
the line error can be factored according to

band~-

ple,t)=E(e, t) [B(&)* 2 Sle=2kn) ] (15)

where * stands for convolution.The envelope
E(e,t) satisfies (see [2]) the Backward
Ko lmogorov equation associated with problem
(7), i.e.,

PE/Gt=—KsinedE/de+ (1/2) (K2r+q) 6°E/de?  (16)

In this paper, an algorithm is pre-
sented to solve Egs.(8) and (16} together
with a convergence study. The properties
of the envelope will be used to provide an
interpretation to the phase error process.

I1 -~ CONVERGENCE ANALYSIS

Egs. (8) and (16) are parabolic par=-
tial differential equations. Here, a fi-
nite difference method is applied to solve
them numerically.

As the coefficients of the eguations
are not constants, there are no known nec-—
essary and sufficient conditions that guar-
antee convergence. However, sufficient
conditions from a study of Keller [3], pro-
vide a tool to compare the behavior of some
algorithms of the finite difference type.
Table 1 presents these conditions for the
cases under study and for the most commonly
used schemes - explicit (EXP) .,
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. . . - N
Crank—-Nicholson (C/N) and completely impli- 111 NUMERICAL INTEGRATIO
cit {(COMP . L. X .
¢ 1MP) methods The completely implicit approximation
relates the function values at four mesh

TABLE I points, three from the line t=j+1 and one
Sufficient diti £ from the line t=j. This relation is ob=-
utircient con.ltlons or convergence tained by replacing the spatial derivatives
of finite difference methods in Lo - - .

. by finite differences at time t=j+1.
solving Egs. (8) and (16)

Writing down the equations for all spatial

grid points, we end up with a matrix equa-
8 Kh<2q 1/h<1/ (2g-hKcose) tion (see [4] or [5])
EXP n+1 n
= 7
16 Kh<2q 1/h<1/2q pp= P (a7
where P/ is a vector containing the func-
tion values at all the spatial grid points
. . t time t=j and D is a tridiagonal matrix.
8 |K1< < 1/h<2/{2q~h a A 2.
1<1l/72 | XKh<2q /h<2/{2q-hKcose) Looking at condition (9), it follows
C/N that it has to be approximated in order to
16 Kh<z Vh<l/ get a_finite support to be used in the com-
<29 q putations. However to build an algorithm
that c¢an be used for an arbitrary time ho-
rizon, the spatial grid must be adaptive,
8 [ki<a Kh<2g i.e. it must grow with time. This was
COMP done by comparing the area under the curve
IMP in the last but one 2x interval with the
16 Kh<2g area in the central 2z interval. When the
ratio of the two areas is smaller than a
certain parameter, the spatial grid is in-
In the table, h and 1 stand for spacew)and creased by one 2x interval on each side.
time increments respectively. The function is then initialized with ze-
Details can be found in [4]. The ros on the new points. The parameter that
third condition, expressing a relation commapds the growth of the grid was found
between h and I restricts the use of the experimentally {(see [4]). The initial con-

dition was approximated by a unit area rec-—

first two methods specially if we are to tangle at the origin. The spatial grid was

compute the solution with high spatial res-

ol N ) : _ dimensioned to simplify the computation of
amgiéozsizi ahiﬁig? t;2§. ho;;goné=l€or iﬁe the elements of D. Actually, if.the points
Crank~Nicholson method applied to Eq.{8) are chosen t? be equlspgced and identically
require 1<.036, whereas for the completely dlsgrlbuteQ in each 2z interval, these ele-
implicit method the reguirement is 1 <l. ments, which are periodic functions {(sine
Under the conditions of table I, the and cose), have to be computed in one
three methods are stable and consistent and 2z interval. A further test of the algo-
the truncation error can be found to be rithm was done by performing the superposi-
O (h2)+0(1) for the explicit and completely tion of Eqgq.{(l12) on the numerical solution
implicit methods and 0(h2)+0{(12) for the of Eq.(8)-(9)-{10) and comparing it with
Crank-Nicholson method. the analytic solution of Eq.{13). The
Because only sufficient conditions for square value' of the area of the error
convergence are available, tests were car- betwefg them was found to be of the order
ried out to help in choosing the integra=- of 10 M
tion method. It was found that violation

of the conditions in the third column of
table I could lead to a nonpositive solu-

tion. 1In particular, the Crank-Nicholson

method for h=.19, K=l., qg=1. and 1=.1 1V - DISCUSSION OF THE RESULTS

ives negative values for the densit of i . .

gq.(8), ghereas for 1=.01<.036 the solition ~In this sgctlon, Fhe numerical results

is correct. obtained by integrating E£gs.{(8) and (16)

The considerations made, 1led to the are presented. Conclusions on the nature

decision of wusing the completely implicit of the phase error are stressed.

method. The resultant algorithm is pre- The tpdf of the phase error is of the

sented in the next sectiomn. multimodal type. Being a diffusion, the
process has a density whose support grows
with time. Fig.l shows the density for two
different signal to noise ratios, a=5dB
and a=-5dB, pointing out the relation
between the diffusion velocity and a . The

(3) space is used to denote the variable e results presented were obtained for the

troughout this paper normalized time instant t/T=2, where T is
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the mean time between cycle-slips.

ax=35
1
M
x=-5
_8m A;i é e em

Figure 1

tpdf of the phase error
for a=5,~-5dB, and for t/T=z.

When a=5dB the figure suggests that
the density can be obtained by repeating
the same shape in every 27 interval weight-
ed by appropriate factors.

Consider the decomposition

e(t)=&(t)+27N(t) (18)

where &€{(t) is the cyclic phase error de-
fined by Eqg.(11) and N(t) is a counting
process. If the two processes were inde-
pendent, then the density of the line error
would be a convolution of P(&) with a sum
of Dirac delta functions standing for the
density of N(t), i.e.,

ple,t) = B(&)* 2 N, (t) & (e-zkxm) (2.9)

Looking at Eq. (15}, it can be seen
that this would be the case if the enve-
lope, Ele,t), were a function constant in
each interval of the form
[{zk=Y)n, (2k+1)n].

Fig.z shows the envelope for the cases
considered in Fig.l. The staircase func-
tion represented corresponds to the

: actual
weights in each 2z interval. It can be
seen that when the noise is strong

( a=-53B}, the envelope is far from the
staircase function leading to the conclu-

sion that the independence

3 assumption
doesn’t fit well.

t —

o 37 5‘7’-' j 7'7! 0 37T ) 57 77T
a=- bds a=bdB

Figure 2

Envelope of Eqg.(16)
for a=5,-5dB, and for t/T=32.

In order to compare the shape of the
envelope for wvarious signal to noise ra-
tios,Fig.3 presents the envelope in the in-
terval [27n,4n] normalized by the difference
between the level in 2z and the level in
4m .

The curves show that with respect to
model of Eg.{(18) there exists correlation
between €(t) and N{t). However this corre-
lation tends to decrease when a grows.
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for certain values of the statistical pa-
rameters.
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An algorithm to solve numerically the
Fokker-Planck equation associated with the
PLL phase error process was developed and a
convergence study provided. The difficul~
ties arising from the unbounded support of
the error process line density were solved
by means of an adaptive space grid.

The density on the line has been fac-
tored as the product of an envelope, that
satisfies a Kolmogorov Backward partial
differential equation, and the steady state
solution for the cyclic problem. The solu-
tion for the envelope equation shows that
there is correlation between the counting
process and the c¢yclic component in the
usual decomposition of the PLL error proc-
ess. This correlation becomes smaller as
the signal to noise ratio increases. The
present study also shows the difficulties
of some of the numerical differencing
schemes in integrating the F/P equation.
This observation is useful in a more gener-
al context, namely that of implementation
of optimal nonlinear filters. Loosely in-
terpreting these filters in terms of an
iterative sequence of a £/P equation and a
multiplicative integral operator, the
Crank—Nicholson method should be used with
precaution [5] due to its difficulties in
preserving the positiveness of the solution
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