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RESUME SUMMARY

We have derived formulas for the combined effects
of quantization and transmission errors on the perfor-
mance of embedded differential pulse code modulation,
a source code that can be used for variable-bit-rate
speech transmission. Our analysis is more general and
more precise than previous work on transmission errors
in digital communication of anslog signals. Special
cases include conventional DPCM and PCM.

Our main result 1s a general signal-to—noise ra-
tio formula in which the effects of source character-
istics (input signal, codec design parameters) and the
effects of transmission characteristics (modulation,
channel, forward error correction) are clearly distin-
guishable. This leads e.g. to computationally-
convenient specialized formulas that apply to uncoded
transmission through a random-error channel, trans-—
mission through a slowly-fading channel snd transmis-—
sion with part or all of the DPCM signal protected by
an error-correcting code.

Numerical results show how channel coding can
have different effects on conventional and embedded
DPCM. They also show how performance is influenced by
the binary-number representation of gquantizer outputs.
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1. INTRODUCTION

Embedded coding cen play & valuable role in va-
riable~bit-rate speech transmission. With an embedded
code the analog-to-digital and digital-to—analog con-—
verters operate at a constant, high bit rate and the
transmission system controls the instantaneous rate.
Proposed applications for variable-bit-rate operation
include a digital private branch exchange, digital
speech interpolation, packet switched voice transmis-
sion and mobile radio [1].

Sophisticated versions of differential pulse code
modulation (DPCM) are promissing speech codes for the-
se and other environments [2]. However, conventional
DPCM is not suited to variable-bit rate transmission
because the decoder amplifies the errors caused by
bit-rate reduction. On the other hand, a slightly mo-
dified form of DPCM avoids this problem and produces
an embedded code [3].

Figure 1 shows the codec (coder, decoder) struc-
ture of embedded DPCM. Although up to E bits/sample
can be transmitted, the signals presented to the two
integrators have a resolution of only M bits/sample,
the minimum bit rate of the channel. While Figure 1 is
a useful guide to practical implementations, Figure 2,
which is equivalent, is easier to analyze. It shows
the quantizer at the encoder as a successive—approxi-
mation combination of two quantizers: a "minimal
quantizer with M bits/sample and a "supplemental
quantizer with E-M bits/sample, operating on the er-
ror signal of the minimal quantizer.

In embedded DPCM, all of the bits from the mini-
mal quantizer arrive at the decoder; the transmission
system can delete some or all of the supplemental
bits. With 8 bits/sample of the supplemental quantizer
transmitted to the decoder the rate is D = M+S bits/
sample and the quantizing distortion is very close to
that of a conventional codec with D bits/sample.

Errors in the two bit streams have different ef-
fects on the decoder output. Errors in the M minimal
bits are enhanced by the decoder integrator which has
no effect on errors in the S supplemental bits. This
situation compares favorably with conventional DPCM
where all errors are integrated at the decoder. It
also has implications for forward error correction in
embedded DPCM.

2. SIGNAL ANALYSIS

Figure 2 shows the signals that appear in the
analysis and defines their notations. We are inter-—
ested in the overall error signal

e(k) = x"(k) - x(k), (1)
the difference between decoder output and encoder in-—
put. In [4] we have derived the formula

e(k) = n_(k)+e_ (k) + (x-1) (2)
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vhere np(k) is the quantization noise of the two-
stage, D-bit analog-to-digital conversion, ep(k) is
the effect of a transmission error on the entire D-bit
transmitted code word and ey({k) is the effect of a
transmission error on the minimal, M-bit DPCM code
word. The coefficients b; are related to the predictor
cgefficients a1,a5,...,ax according to [1-F(z)]"1 =
iEO biznl with by=1. Formally eM(k) = qﬁ(k)-—qM(k) is
the difference between the quantized inputs to the de-
coder and encoder integrators. To define nD(k) and
ep(k) we view the combined code word with M+S=D bits
as a digital representation of £(k) = x(k) -y(k). A
D-bit digital-to-analog converter produce the quan-—
tized signal gp(k) and so we have the definition of
quantization error np(k) = qp(k) - &(k). At the recei-
ver, where the D bits/sample are possibly corrupted
by transmission errors, a digital-to-analog converter
would produce gp(k). The transmission error is eD(k)=
qﬁ(k) - QD(k) = eM(k) + es(k).

3. MEAN-SQUARE ERROR

To analyze the mean value of the mean square of
(2), B{e2(x)}, we assume that the sequence {x(k)} is
drawvn from a stationary ergodic random process. In our
derivations we ignore all correlations between non-
simultaneous samples. That is, we assume E{[np(k)+
ep(k)ley(k-i)} m» 0 5 1> 1 and E{ey(k-i)ey(k-j)} ~ 0 ;
i# j. This says that the overall error (quantizing
plus channel distortion) in the k—-th sample is uncor-
related with errors in other samples of the minimal M-
bit quantized samples. It also says that errors in
different minimal samples are uncorrelated. These app—
roximations are accurate because the sequence of samp-
les at the input to a DPCM quantizer is decorrelated
by the differential coding process and because trans-
mission errors affecting different code words are in-
dependent or only weakly correlated. The approxima—
tions remove the last two sums from the expected value,
leaving

B{e?(K)} = E{ln(k)¥ep (k)P 1p E{eo(6)}  (3)

in which we summarize the influence of the prediction
o0

in by, = I b?. The expectations in (3) are related to
i=1

the quantization and transmission of &(k), the DPCM

difference signal. Below we present a complete theory

of the errors due to these operations. While this

theory relates these errors to 0% = E{£2(k)} we are

ultimately interested in the sighal-to-noise ratio of

the codec input, x(k)

SIR = B0 (6)}/E{(P(6)} = o2/0” ()

. . 2
To find this quantity we need Oi/gi‘
In [4] we have shown that

oi/oé = G[1—aPL20c21(M)] (5)
where

2 K 2
¢ = o /BlIx(k) - I ax(k-1)]%} (6)
i=1
is called the predictor gain and
X
z a?
i=1 %

(1)

L is the dimensionless load factor L= Emax/0g where the
quantizer overload point is Emax- o2(M) is the granular
quentizing noise of an M-bit quantiZer with unity over-
load point, derived in the next section.

L. QUANTIZATION AND TRANSMISSION NOISE IN PCM

To analyze (5), we study, statistically, the quan-
tization and transmission of the DPCM difference signal
g(k). In this type of study it is customary to separate
the quantizing error into two components: overload
distortion and granular noise. In speech communication
this distinction is valuable for predicting subjective
quality [8], [9]. Moreover, in analyzing DPCM the dis-
tinction is essential because, except for a codec with
an ideal integrator [10], there is no theory for compu-
ting the mean-square slope-overload distortion. Thus ,
our analysis separates the transmission of clipped
samples of £(k) from samples subject to granular dis-
tortion. Our theory pertains only to the transmission
of unclipped samples. The embedded coded has a fixed
overload point (independent of the number of bits trans—
mitted) and we investigate the effects of bit rate and
transmission conditions on granular quantizing noise.
The remaining analysis will be confined to conditional
expectations that we have unclipped samples. To be con-
cise in the remainder of this paper, we will omit the
granular condition, |£(k)| < Epaxs from our notation of
expected values. To facilitate numerical evaluation of
signal-to~noise ratios we will consider normalized er-—
ror terms. The normalization relates these errors to a
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quantizer with unity overload point and an input with
probability density function p,(+). If the quantizer
of interest has an overload point of gpax and the in-
put has the probability demsity pg (*), the relevant

errors are scaled by E? The two probability densi-
ties are related by p,(u a§ EmaxPE(gmaxu) To confine
our attention to the granular quantization condition,
we use the scaled variable u confined to the interval
lu|§_1 with probability 1 having the density function

p, (u)
—7—J£~————' Iul < 1
Pgr(u) = _{ plu)du
0 |u| > 1

The signal u = £/Ep,y 1s processed by a B-bit
analog-to-digital converter with overload point 1 and
step size Ag = 2=(B=1), The digital output of the A/D
is i and the corresponding quantized signal is uj
which is related to u by uj = —1+ (i+0.5)Ag when
-1+iAg < u < —1+(i+1)Ag, i = 0,1,...,25-1.  The B-bit
code word i is transmitted and i' is received, with
the transformation of i to i' characterized by a bi-
nary error pattern with index £, £ being an integer
in the range 0,23—1.

With u the quantizer input, and £ the binary er-
ror pattern we denote the received sample U Q- It is
helpful to separate the complete error ujg-u into
nngn+179+1nn—n01qp and transmission-noise components

nantlzation

as follows,

U pu = (ui—u) + (uiz

_Our goal is to evaluate the mean-square of (8)
over the joint distribution of input statisties and
binary-error patterns. The key to our analysis is the
definition of A-factors which are conditional mean-—
square errors, each related to a specific binary er-—
ror pattern, 2. By analyzing these conditional errors,
we separate the effects of source characteristics
from the effects of transmission characteristics. The
source effects are embodied in the A-factors; the
transmission effects are embodied in probabilities of
error patterns. These probabilities govern the weight-
ed addition of the A-factors to produce the final re-
sult. This approach to analyzing trensmission impair-—
ments was introduced by Rydbeck and Sundberg [51,
[6]1, [7], who were mainly concerned with quantizers
with 6-8 bits/sample. This high resolution admitted
various approximations which are inaccurate in the
2-4 bit quantizers of greatest interest for embedded
DPCM transmission.

To compute the mean—square value of (8) condi-
tioned on error pattern £ we will identify three im-
portant quantities: Og(B), the granular noise power
of a B-bit quantizer, AQ(B) the mean-square effect
of error pattern £ on the quantized signal u; and
AQ(B) the overall effect of error pattern £ on the
nmean-square error of the analog output usg. To derive
computatlonally convenient expressions for 0 (B),
Ag(B) and AQ(B we define

;) (8)

1]
=]

121 gr

©
[l
<
NS

(ui—u)pgr(u)du (10)

of. = f  uip (s, (11)

in which v; is the lower boundary and viyy is the up-
per boundary of quantizing interval i:
vi = -1+527(3-1) 55 = 0,0,

Now we write the definitions followed by compu—
tational formulas for the quantizing noise and the
effects of error pattern %:

B
251
2,4 _ 2_ 2 2
cq(B) = E(ui—u) = ogr + iio (quui Piui) (12)
2 2”1 2
AR(B) = E(uik—ui) = I p.(u ) (13)
1=0
N 2By
Ay(B) = 4,(B) + 2 izo a; (uy p-u,) (1k)

%,(B), the difference between the total noise and the
quantizing noise, includes the correlation between
quantization effects and transmission-error effects.
In multibit quantizers (B>4) this correlation is
small and AR(B) I AQ(B) an assumption inherent in
previous work on PCM. Because low-resolution quanti-
zers are of interest in DPCM we take account of this
correlation in our present work. Finally, we combine
(12)~(14) to write the mean-square value of (8)

€% = B(u;-u)® = o3(8) + K (B) (15)

In [4] we have given numerical data for A
AQ(B) factors above. To compute AQ(B) %B), 1t is
necessary to know ujg-u;, which depends on the binary
number representation of uj. We consider two repre-—
sentations: natural-binary and sign-magnitude [L4].
In general, the Ag(B) and %, (B) depend on p; and gj.
Returning now to (3) we have two expectations:
the first is the combined (quantizing and transmis—
sion) noise of a D-bit signal; the second expecta—
tion is the noise due to transmission errors in the
M-bit minimal signal. Using the above and combining
(3), (4) and (5) we arrive at the signal-to-noise
ratio

Gl1-agL cQ(M)] (16)

SNR = 5 W
o o 271 _ 271
L°[o%(D)+ =% P(JL)ASL(D)+bP z
4 =1 2=1
which is the principal result of this paper.
With the exception of the two summations in the deno~—
minator, all of the quantities in (16) are properties
of the input signal and the codec design parameters.
These summations,

P(2)4, ()]

2Pq oM_q

P(S?,)A()+b b

(16a)
W® =y g=1

P(K)AQ(M)

comprise the effects of transmission errors on the
performance embedded DPCM.

5. TRANSMISSION EFFECTS, BINARY-ERROR PROBABILITIES

The 2P probabilities, P(2), of binary-error
patterns are properties of the digital transmission
system which includes a modulator, a channel, a demo—
dulator and possibly, a codec for forward error cor-—
rection and possibly a means for combining different
versions (diversity branches) of the received signal.
Depending on these components, the P(£) exhibit pro-
perties that facilitate evaluation of the sums in
(16). For details, see [L4].

Assume that errors in all bits are statistically
independent of each other and occur with probability
P. The probability of error pattern 2 depends only on
w, the Hamming weight of 2, i.e., the number of ones
in the B-bit binary representation of %. Thus

P(2) = P (1-p)B¥ (17)
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Expanding (17) leads us to express the summations in
(16) as polynomials in P. The coefficients of the po-
lynominal involve the sums of all A-factors with a
fixed Hamming weight w. Let us denote these sums

S4(B).

EW(B) =£z KQ(B) (18)

W

5. (B) = SLZW AQ(B) H

where £, is the set of all error patterns with Ham-—
ming weight w. Combining (17) and (18), we can write

B

27-1 B
X P(Q)AR(B) = 1 P T (B) (19)
2=1 w=1
where
(e = ¢ (B9 (c1pvis,(m) (20)
v s2q W=/ j

and analogous for Tw(B) expressed in S:(B).

For the natural-binary and sign-magnitude repre-
sentations we can prove the surprising result that
for any input probability distribution, T, {(B) =

~
m

iw<B) = 0 for w>2. Thus the transmission term in

(16) is

2
oit= I P (D) + o F () (21)
w=1

This formula is valid for channels with random binary
errors.

For slow fading channels, the binary-error pro-
bability is a random variable that is constant over
each code word but varies from word to word. In this
case the effects of digital errors can be calculated
as in (21) but with the average values PY replacing
PY. These averages are computed over the distribu-
tions of channel SKR's that govern the random fluc—
tuation of P from one code word to the next.

To analyze the performance of embedded DPCM pro-
tected Dy an error-correcting channel code, we make
three simplifying approximations. The first one,
wnich pertains to the error—correcting code, states
that when there is a decoding error, all error pat-—
terns are equally likely. Thus we assume that if the
C most significant DPCM bits are protected by the co-
de, P(2) = Pee2'C, 2= 1,2,...,20-1 ang P, is the
bit error provabiliiy Tor the channel code

The other two epproximations apply when C<D, so
thet the C most significant DPCY bits are protected
and the other D-C bits are uncoded. To simplify com-—
putations for this case, we {1) ignore simultaneous
errors in the protected and unprotected varts of the
D-bit word and (2) ignore multiple errors in the un-
protected part. In [L4] we consider separately three
different relations;ins among C, the number of coded

™ 43

oits, D the length of the entire DPCM code word and

¥ the number of bits in the minimal quantizer. First

we give the formula f r the entire code word protec—
IRy A

ted (<D =2C In tals case
2 1 ~{D} o \
= — k) )l
Oqt QC_1 Pe[As“ () + DPAs’ ( i1 (22}

N - o C
waere we define the suz of the first 2°-1 A-factors

c . C
'V(C 2 -1 ~ ((.,\ 27 -1
(D) = > Iy Nliiay oy (= P
)= L AD A )=1¥ A 23
sux:\ n 2\ /s SUIZ':\ / 2\—1/ ( >/
2= 1 =
Ref., [4] conteins numerical values of Asdd and Agym

Tor the sets of conditions of interest to us here.
Next consider the case M<C<D. In this event we
assume that all of the unvprotected bits have the bi-
nary-error provaviliiy P and that as before the pro-
tected bits have binary-error probability Pg. Further-—
more we sel 10 zero tiae probability of simultaneous
errors in the protected ané unprotected varts of the

code word. (These errors occur with probability rela-
ted to PeP). We also set to zero the probability of
multiple errors in the unprotected part of the code
word (which occur with probablllty less than P?).
Thus we break the first sum in (16) into two parts.
The first part accounts for errors in the first C
(protected) bits when the other D-C bits are error-—
free, £ = 1,2, 20—1 The second part accounts for
single errors in the remaining D-C bits when the
first C bits are error free, £ = ZC 2C+1 ,...,2D 1.
The result is [k4]

D-1
um D)+P I X i
2 i=¢c 2
Just as we decomposed the first sum in (16) into
two parts in the previous case, we similarly decompo-—
se the second sum when some of the M minimal bits are
unprotected. Thus, the result for C<M<D is

P
—& (M) (M) (24)

(D)+b
2c 1

2 %(C) (c) (c) (c)
cqt 201(SWJDHbA (MO+PO%H(MH§%m(M0
(25)

= L(d N )/3 and analogous for

Wi e
?CS M), see [u]

6. NUMERICAL RESULTS

All of our numerical results pertain to a Gauss-
Markov input signal with adjacent-channel correlation
E{x(k)x(x+1)} = 0.85. The codec uses single integra-
tion with coefficient aq= 0.85 and the load factor,

L = /10. For this configuration the coding gain is

G = 3.6. If the embedded codec has_a minimal quanti-
zer with M=2 bits, Cg = G[1—aPL20q(M)]/L2 is 0.31.
For conventional DPCM Cg 0.35 with 3 bits/sample
and 0.36 with 4 blts/sample Thus the quantizing-noi-
se penalty of the embedded codec is 0.54 dB when 3
bits are transmitted and 0.68 4B when U bits are
transmitted. As indicated in [3] these penalties in-
crease for higher values of L and a4. They decrease
rapidly as M increases. In our numerical examples

the modulation is coherent phase shift keying in a
white~Gaussian—noise channel (one-sided@ spectral den-
sity). We have used punctured R=2/3, 3/U4 convolutio-
nal codes with 16 states. The R= 1/2 code also has 16
states. P, is estimated by means of a truncated union
vound [11].

Figure 3 shows the performance of embedded DPCM
in four transmission environments, all of them em—
ploying coherent phase shift keying (CPSK) modulation
at 32 kb/s in a white-Gaussian-noise channel. The en-
coder operates at 32 kb/s (8 kHz sampling, & bits/
sample) and in format 1 all of this information is
transmitted. Figure 3 indicates that when the channel
SKR falls below 10 4B, the audio SNR deteriorates ra-
pidly. In format 2, the least significant bit of each
DPCM code word is deleted and the remaining 3 bits/
sample are protected by a rate 3/4 convolutional code.

lthough there is more quantizing noise than in for-
mat 1 (the SNR is 6 dB lower in the absence of trans-—
mission errors), the convolutional code provides for
accurate reception of the transmitted bit stream at
channel SKR's down to 3 dB. Going one step further
with this approach to channel coding we have format 4
in which 16 xb/s of speech data are transmitted under
tae protection of a rate 1/2 code. The threshold of
essentially error-free performance is now extended
Gown to a channel SNR of about 0 dB.

In code format 3, the speech transmission rate
is 2k xb/s as in format 2 but now only 2 of the 3
bits/sampie are protected by the convolutional code
which has rate 2/3. The threshold of curve in Figure
3 is about 1 &B lower than that of curve 2. On the
other nand, format 3 is slightly worse than format 2
in intermediate channel conditions (SNR's between 3
ané 5 dB). Over this range, format 2 is essentially
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error free, while format 3 affected by errors in the
unprotected third bit of each code word. The effect
is small, however, because these errors are not am—
plified at the decoder.

With conventional, rather than embedded, DPCM,
the corresponding picture, Figure 4, is rather dif-
ferent, especially with respect to format 3. Here
channel errors in the unprotected third bit are am~
plified by the integrator at the decoder. The result
is a noticeably lower output SNR relative to format 2
(al1l three bits protected) when the channel SNR is
between 3 dB and 6 dB. On the other hand, in clear
channels, the output SNR of conventional DPCM at 2L
kb/s (formats 2 and 3) and 32 kb/s (format 1) is
about 0.7 dB higher than that of embedded DPCM owing
to the greater accuracy of prediction in the conven-—
tional encoder.

Without forward-error correction, the noise due
to transmission errors is dominated by the effects of
single errors in the most significant part of the
transmitted code word. With the natural-binary repre-
sentation, an error in the most significant bit al-
ways causes & noise impulse of half the peak-to-peak
range of the quantizer. With the sign-magnitude re-
presentation, an error in the sign-bit inverts the
polarity of the quantized signal, thereby producing
a noise impulse of approximately twice the magnitude
of the quantizer input. Consegquently, quantizers em-
ploying the sign-magnitude representation are some-—
what less affected by transmission errors than guan-—
tizers with the natural-binary representation when
the input probability distribution has its mode at
zero. This is 1llustrated in Figure 5 which pertains
to uncoded 32 kb/s embedded DPCM transmission. When
transmission errors are the dominant source of dis-
tortion, signals represented in the natural-binary
format are about 2 dB noisier than signals represen-—
ted by the sign-magnitude format.

(1]

(2]

[31]

(41

{51

(6]

71

{8]

[9]

[10]

[11]
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Fig. 3. Audio SNR as a function of channel SNR for
32 kb/s phase-shift keying transmission in a white—
Gaussian-noise channel. Format 1: embedded DPCM at
32 xb/s. Format 2: embedded DPCM at 2L kb/s, rate
3/k convolutional code. Format 3: embedded DPCM at
2k kb/s, rate 2/3 code. Format 4: embedded DPCM at
16 kb/s, rate 1/2 code.
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Fig. 5. Performance of embedded DPCM with sign-magni-
tude and natural-binary representations of quantizer
outputs. Because the errors in receiving low-level
signals are smaller with the sign-magnitude represen-—
tation it has an SNR that is about 2 4B higher than
natural-binary when performance is controlled by
transmission errors.



