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PR e S

RESUME

I1 est bien 8tabli que le décodage de la grande
majorité des codes en blocs nécessite une quantifi-
cation & décisions fermes & la sortie du démodulateur
du systéme de réception. En conséquence ces systeémes
subissent une perte de 2 3 3 dB par rapport a des
systémes, tels que les codes convolutionnels, qui

utilisent une quantification 3 décisions pondérées.

Cependant dans les systémes ol le protocole de
communication requiert une transmission des données
en bloecs (comme, par exemple, les réseaux utilisant
1'AMRT ou la commutation par paquets) l'usage de
codes convolutionnels ne s'avére pas attrayant en
raison de la réinitialisation requise aprés chaque
transmission. Dans ces situations les codes en blocs
semblent &tre plus intéressants. '

Dans cet article, on présente une classe de codes
en blocs qui sont décodables par quantification a
décisions pondérées, permettant ainsi une communi-
cation efficace. Ces codes appartiennent & la classe
des codes quasi-cycliques mais, utilisant la théorie
développée par Solomon et Van Tilborg, sont encodables
de fagon convolutionnelle avec une faible longeur de
contrainte. La classe des codes obtenus comprend les
codes auto—duaux extrémaux, certains codes cycliques
de Mac Williams et ceux dérivés des codes résidus
puissance . La performance de ces codes est calculée
en applicant, en conjonction avec une quantification
3 décisions pondérées, la borne union & la distri-
bution de leurs poids de Hamming. Pour des taux
d'erreur part bit inférieurs 3 10~3, correspondant au
domainé. d'intdr@t pour les applications du codage, les
gains de codage obtenus s'échelonnent de modérés &
sensationnels.

Enfin, il est bon de mentionner la découverte
d'un nouveau code cyclique (151,136) d'une puissance
de correction de 2 erreurs. Jusqu'd présent le
meilleur code en bloc de méme dimension &tait un
code non linéaire découvert par Preparata.

*

SUMMARY

It is well known that to decode almost all
block codes it is necessary to use binary quanti-
zation (hard-decisions) at the demodulator output of
a block coded communications system. This limitation
translates as ‘a loss of 2 to 3 dB in comparison with
the soft-decision decoded convolutionally coded
communications system.

On the other hand, in situations where the
system protocols require the transmission of blocks
of data (such as TDMA and Packet Satellite Networks) ,
all convolutional systems require flushouts and re-
starts, i.e., the CODEC must be set to the all zero
state before processing the next block. For such
systems block codes appear to be more attractive.

In this paper, we present a class of block
codes which are soft-decision decodable and thus
contribute to efficient block coded digital communi-
cations. The approach taken is to construct a large
number quasi-cyclic codes. These are convolutionally
encodable with small constraint lengths due to :the
theory developed by Solomon and Vaa Tilborg. Using
the weight distribution of the codes considered
(which include extremal self-dual codes, certain
cyclic codes of MacWilliams and codes derived from
power residue codes) we compute their performance
using the union bound for soft decision decoding.
For bit error rates below 10'3, which is the region
of interest for coding application, the coding gains
obtained from these codes range from moderate to
spectacular.

A final point worth noting is the discovery of
a (151,136) double error correcting cyclic code.
Earlier, the best known block code of similar dimen-
sion was a nonlinear code due to Preparata
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1. INTRODUCTION

Probably the best known techniques for soft-
decision decoding are correlation decoding of block
codes and Viterbi decoding of convolutional codes. It
can be shown that for a code with equiprobable code
words the correlation receiver is optimum (ref. 1).
Unfortunately a majority of block coded systems employ
a hard-decision quantiser before decoding in order to
extract the digital information. This hard-decision
process gives a degradation in performance of 7/2
(approximately 2 dB) compared to the optimum receiver
in the Gaussian channel. It follows that for this
channel, the maximum improvement to be expected by
introducing soft-decision deceoding into a block coded
system is equivalent to this degradation.

In this paper, we present a class of block codes
which are soft—decision decodable and thus contribute
to efficient block coded digital communication . The
approach taken is to construct and compute the weight
distribution of a large number of quasi-cyclic codes
and then evaluate their performance using the union
bound for soft-decision decoding. These codes are
convolutionally encodable with small constraint length
due to a theory developed by Solomon and van Tilborg
(ref. 2).

This paper develops in the following way. Section
2 presents a model of block coded digital communi-
cation . In Section 3 we discuss the coding gain and .
the union bound for soft-decision decoding. In Sectiomn
4 we discuss the theory of the class of codes used.
Section 5 is devoted to performance evaluationof seve-
ral block codes. These include the rate 1/2 extremal
self-dual codes (ref. 3), several codes with rates
less than 1/2 and some high rate codes. Finally, Sect-
ion 6 is devoted to discussion of the results presented
in this paper.

2. BLOCK CODED DIGITAL COMMUNICATION

. A block diagram which describes the digital commu~-
nication process using forward error correction pro-
cess is shown in Fig. 1. In block encoding, a block
of k information bits is encoded into corresponding
blocks of n symbols. Each block of n symbols from the
encoder constitutes a code word contained in a set of

2k possible code words. The code rate, defined as the
ratio k/n and denoted r is a measure of the amount of
redundancy in the (n,k) code. Thus if Ey, denotes the
energy per bit then Eg, the energy per coded bit,
referred to as a symbol, is given by

E =71rE_ =E, - lOloglO(%)dB

s b b

Note that the introduction of error-control cod-
ing requires more capacity. This can be in the form
of wider bandwidth, longer bursts in time division
multiple access (TDMA) systems, or a higher "chip"
rate (and hence a higher bandwidth) in spread spectrum
systems, if the same processing gain is needed (ref.-4).

The Hamming weight of a code word ¢, denoted
w(g), is defined to be the number of non-zero compo-
nents of c. For example, if ¢ =(110101), then w(c)=4.
The Hamming distance between two code words ¢y and
¢y, denoted d(c »€5), 1s the number of positions in
w%ich they differ.” For example, if ¢y = (110101) and
¢p = (111000) then d(c ,92) =3, Clearly d(gl,gz) =
w(gf@gz) =w(§3), wheré cj for linear codes, is some
other code word. Therefore, the distance between any
two code words equals the weight of some other code
word, and the minimum distance d for a linear block
code equals the minimum weight of its non-zero code
words.

A code can correct all patterns of t or fewer
random errors and in addition detect all patterns
having no more than s errors provided that s+t +1 <d.

If the code is used for error correction only then the
code can correct all patterns of t or fewer random
errors provided that 2t +1 <d.

The encoded sequence is suitably modulated and
transmitted over the noisy channel, 1In systems where
coherent demodulation is possible (i.e., a carrier ref-
erence can be obtained), phase shift keying (PSK) is
often used. 1In binary PSK an encoded 1 is represented
by the wave forms sy(t) =A cosw.t, while an encoded 0
is represented by the antipodal signal sq(t) =-sy(t) =
A cos (wpt+m), the waveforms changing at discrete times
T, seconds (symbol duration) apart.

The demodulator estimates which of the possible
symbols was transmitted based upon an observation of
the received signal. For phase shift keying (PSK) with
white Gaussian noise and perfect phase tracking, the
optimum receiver is a correlator or matched filter
receiver which is sampled each T4 seconds to determine
its polarity. It is easily shown that the voltage z,
at the matched filter output at the jggple time is a
Gaussian random variable with mean *vEg, (depending
upon whether a 1 or 0 was transmitted) and variance
g2 =N,/2. In the above, Eg is the energy per symbol.
E} denotes the received energy per bit (what we pay)
and Ny denotes the one sided noise spectral demsity
(what we must combat).

2.1 Hard Decisions, Soft Decisions

In practical communication systems, we rarely have
the ability to process the actual analog voltages zj
(the values taken by the random variable z). The nor-
mal practice is to quantize these voltages. If a
binary quantization is used, we say thata harddecision
has been made on the correlator output as to which
level was actually sent. In this case, we have the so
called binary symmetric channel (BSC) with probability
of error P,. For example, in coherent PSK with equally
likely transmitted symbols, the optimum threshold is at
zero. Then the demodulator output is a zero if the
voltage z at the matched filter output is negative.
Otherwise, the output is a one. Without coding, matched
filtering with hard decisions is an optimum receiver.

With coding, it is desirable to keep an indication
of how reliable the decision was. A soft-decision
demodulator first of all decides whether the output
voltage is above or below the décision threshold, and
then computes a “confidence'" number which specifies how
far from the decision threshold the demodulator output
is. This number in theory could be an analogue quan-
tity, but in most practical applications a three bit
(eight level) quantization is used.

An example of three bit quantization is shown in
Fig. 2. The input to the demodulator is binary, while
the output is 8-ary, delineated by one decision thresh-
old and three pairs of confidence thresholds. The
information available to the decoder is increased con-
siderably and translates as an additional gain of 2 dB
in most instances (ref. 1). Furthermore, 8-ary quanti-~
zation results in a2 loss of 0.25 dB compared to infin-
itly fine quantization, therefore, quantization to more
than 8 levels can yield little performance improvement.
Of course, the receiver complexity is increased as an
AGC will probably be needed and three bits will have
to be manipulated for every channel bit. The channel
resulting from three bit quantization on a Gaussian.
channel is called the binary input, 8-ary output, dis-
crete memoryless channel (DMC), and is shown in Fig. 3.

3.0 CODING GAIN AND THE UNION BOUND FOR SOFT-DECISION
DECODING

Before we start our study of codes, consider a
Gaussian memoryless channel with one-sided noise spec-
tral density N, and under no bandwidth limitation. Let
E, denote the received energy per bit. Then it can be
shown that for Eb/NO greater than -1.6 dB, there exists
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some coding scheme which allows us to communicate with
zero error, while reliable communication is not gen-—
erally possible at lower signal~to-noise ratios. On
the other hand, it is well known that uncoded PSK over
the same channel will require about 9.6 dB to achieve
a bit error rate of 10~3, Thus, a potential coding
gain of 11.2 dB is theoretically possible. Coding
gain is defined as the difference in values of Ep/Ng
required to attain a particular error rate without
coding and with coding.

Asymptotic coding gain, a figure of merit for a
particular code, depends only on the code rate and the
minimum distance. To define it, consider a t-error
correcting code with rate r and minimum distance
d>2t+1. If we use the code with a hard decision PSK
demodulator, it can be shown that the bit error rate
Py is

VIE T (eF /N ) - A
Pb,th( ZEbr(t+l)/No , where Q(x) =/ Wi e

With a soft-quantized PSK demodulator, we have
Pb,s > Q(/ZEbrd/No)
Recall that for uncoded PSK
P, = Q(JZEb/NO)

Thus the asymptotic coding gain Ga for the two cases
is:

Ga <r(t+l) = 10.logr(t+l), dB (Hard-decision)

Ga <rd 10 logrd, dB (Soft-decision)

The above indicates that soft decision decoding
is about 3 dB more efficient than hard decision decod-
ing at very high E,/N,. A figure of 2 dB is more
likely at realistic values of Ey/N,.

Let Aj denote the number of code words of weight
i in an (n,k) code with minimum distance d. Then the
soft~decision decoding bit error rate P,, in the case
of the Gaussian channel with CPSK modulation is
bounded from above by

ki E
. b
N a5 N €D

The -computation of the probability of error for
soft-decision decoding according to Eq. (1) requires
the knowledge of the weight distribution of the code.
Fortunately, the weight distribution of many codes
have been tabulated in the literature.

The upper bound of Eq. (1) is particularly tight
at high signal-to-noise ratios. Usually, it gives an
accurate performance estimate for bit-error rates
below 107, which is the region of interest for coding.
The bound is also valid for QPSK modulation. Indeed
the BPSK modulation of quadrature carriers is equiva-
lent to quadraphase modulation of one carrier. Thus,
QPSK need not be separately treated except for syn-
chronization and phase error requirements.

P <
e -

==

I ~13

4.0 THE CLASS OF CODES CONSIDERED

We are primarily concerned with (ms,m) rate 1/s
and (m(s+l),ms) rate s/(s+l) quasi-cyclic codes and
codes related to them. Example of the related codes
include the power residue codes, extremal self-dual
codes etc. (ref. 5,6).

The generator matrix of a (ms,m) rate 1/s quasi-
cyclic code is of the form

G = [Cl’CZ’CS""’ Cs] (2)

where each Ci is a mXm square circulant matrix of the
form

C = . . . (3)

with ¢, € GF(2) for the binary codes.,
In the systematic form Eq. (2) can be written as

6 = [1,,€,,Cpsenvs €] (4)

Here Iy is an identity matrix of order m. Similarly, a
(m(s+l),ms) rate s/(s+l) quasi-cyclic in the systematic
form, has a generator matrix of the form

(5)

Every code word of the code generator bythe matrix
of Eq. (4) is a linear combination of the rows of G.
It is well known that the algebra of mxm circulant-
matrices over GF(p) is isomorphic to the algebra of all
polynomials (mod x®-1) over GF(p). Further, the matrix
C of Eq. (3) is completely specified by associating
with it the following polynomial formed on its leading
row
m-1

c(x) = c0-+cl(x)-+--- +cm_lx

Thus, if i(x) represents the information digits in the
polynomial form, each code word in the rate 1/s code is
of the form

v = [ e (). e, iGe, ;) ()] (mod x"-1).

In a similar fashion, each code word in the code
generated by the matrix G of Eq. (5) is of the form

V() = [1;@),1,&) 5.0y 1,); p&)] (mod x™-1)

s
where p(x) = 2 i.(x)e,(x) (mod xm—l).
j=1 3 3

Note that the generator matrix of Eq. (4) or Eq.
(5) is completely specified by the circulant matrices
Cl’CZ"" . Thus, we shall speak of the code as being
generated by the circulants Cp,Co,... Equivalently,
we shall also speak of the code as being generated by
the polynomials ¢y (x),cp(x),... . Also, in the binary
case we shall often use the octal representation of
these polynomials. For instance, the octal number 64
has the binary form 110100 and represents the poly-
nomial 1 +x +x°.

The encoding of quasi-cyclic codes is quite
straightforward and like cyclic codes can be accom-—
plished by shift registers. More importantly, under
certain conditions, these codes are soft-decision
decodable and thus contribute to efficient block coded
digital communications. Specifically, Solomon and
van Tilborg have shown a large number of quasi-cyclic
codes to be convolutionally encoded with small con-
straint length. Thus we have a simple maximum likeli-
hood decoding algorithm for many quasi-cyclic and rela-
ted codes, Further, the weight distribution of many
quasi-cyclic codes has been tabulated in (ref. 7-13).

5.0 PERFORMANCE EVALUATION

In this section we first evaluate the performance
of several rate 1/2 quasi-cyclic (or related) codes.
We then examine codes with rates less than 1/2. Such
codes buy improved performance at the expense of
increased bandwidth expansion and more difficult symbol
tracking due to decreased symbol energy-to-noise ratios.
Some of these low rate codes are useful for spread
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spectrum applications as well. Codes with rates above
1/2 conserve bandwidth but are not as efficient in
energy.

5.1 Extremal Self-dual Codes

A binary (2m,m) rate 1/2 code is generated by a
matrix of the form

(6)

where I is the mxm identity matrix and P is an mxm
binary matrix. If P is a circulant, we have a quasi-
cyclic code.

The code generated by Eq.
dual if

G = [Im,P]

(6) is said to be self-

PPT = Im (modulo 2)

Many good codes are self-dual, such as the extended
Golay code and certain quadratic residue codes, etc.

The minimum distance d of a (2m,m) self-dual code
is upper bounded by the relation

d < 4[m/12] +4,

and if d =4[m/12] +4, the code is called an extremal
self-dual code (ref. 14). The known codes in this
family are summarized in Fig. 19.2 of ref. 6. How~
ever, it i1s not known if there is a (72,36) extremal
self-dual code (ref. 15). The codes considered have
been selected for the following reasons:

(i) Extremal self-dual codes are well understood
(See Chapter 19 in ref. 6).

The union bound for soft decoding depends on the
weight distribution of the code and thus it can
be applied to codes with known weight distribu-
tion. Fortunately, the weight distributions of
extremal self-dual codes are known (ref. 14).
When a transmission system is bandwidth—limited
for BPSK the combination of QPSK and the codes
considered can provide a solution (ref. 1).
These codes are ''transparent” and are thus val-
uable for PSK modulated systems with its ensu-
ing sign ambiguity. Decoding can be done prior
to ambiguity removal and thus circumventing dif-
ferential decoding at the decoder input which
will double the decoder input rate (ref. 1).
There are plenty of extremal self-dual codes of
various lengths (ref. 14).

(i1)

(iii)

(iv)

)

In Fig. 4, we present the performance of several
extremal self-dual codes of length 8 to 72 using the
bound of Eq. (1). These were first reported in (ref.
14). All codes except the (72,36) code are known to
exist. As can be seen from Fig. 4, the coding gains
obtained from these codes range from moderate to spec-
tacular. Several observations may be made based on
Fig. 4.

(i) At very low error rates, not much is to be
gained by going to longer block lengths for a
specified minimum distance.

At high error rates and for a specified minimum
distance, there is a tradeoff between various
codes. The tradeoff can be attributed to the
weight distribution of the codes and in parti-
cular on the number of code words having the
minimum weight.

The performance of the (48,24) code, for which
a soft-decision decoding algorithm has been
designed by several researchers at NASA's Jet
Propulsion Laboratory, is only slightly inferior
to a rate 1/2 constraint length 7 convolutional
code with Viterbi decoding using soft quantiza-
tion (ref. 16). However, it is also known that
the (48,24) code can be modelled as a rate 1/2
constraint length 6 convolutional code and
therefore will have a significantly less decod-
ing complexity (ref. 2).

(i1)

(iii)

5.2 Low Rate Codes

We now determine the performance of several block
codes whose generator matrix can be permuted in the
form of Eq. (2) or Eq. (4). Two such families are the
cyclic codes of MacWilliams (ref. 17) and the power
residue codes (ref. 18).

MacWilliams' Codes

Mrs. MacWilliams has given the method for the
decomposition of certain cyeclic codes of block lengths
3p, 7p and 5p. Using her results, it is easy to com-
pute the weight distribution of the (87,29), (85,17)
and the (91,13) code with minimum distance 24, 21 and
36 respectively.

The (87,29) code is generated in the systematic
form by cy(x) =6364221362 and cp(x) =5413556414,

The (85,17) code is generated in the systematic
form by cy(x) =42412, cy(x) =41144, c3(x) =540014 and
cg (x) =602202.

The (91,13) code is generated in the systematic
form by cl(x) =4264, cz(x) =61104, c3(x) =75134,
c4(x) =5403, c5(x) =63744 and cg(x) =5667.

The performance of all these cpdes is plotted in
Fig. 5.

Codes Derived from Power Residue Codes

It is well known that the s—th power residue codes
with first digit deleted are equivalent to rate 1l/s
quasi-cyclic codes (ref. 18). An s-th power residue
code of length n is defined as a cyclic code over
GF(2) with a check polynomial of the form

h(x) = T (x-8")
reR

where R is the set of s-th power residue mod n, and B
is a primitive n-th root of unity in an extension field
of GF(2). 1In Fig. 5 we plot the performance of the
dual of quasi-cyclic codes obtained from power residue
codes. These include the (72,9), (88,11) and (150,15)
code derived from the octic and 10th power residue
codes based on the primes 73, 89 and 151.

It is clear from Fig. 5 that significant coding
gains can be realized by the use of low rate quasi-
cyclic codes.

5.3 High Rate Codes

In Fig. 6 we provide the performance curves for
some selected high rate codes. The (30,20) code is gen-
erated by cq(x) =57 and cy(x) =726 while the (54,36)
code is generated by cj(x) =400166 and cy(x) =475271,

The (68,51) code is derived from the (85,68) cyclic
code of MacWilliams and is generated by cj(x) =42412,
¢ (x) =41144 and cg(x) =540014.

The (150,135) code is derived from the (151,136)
10th power residue (ref. 20). A comparison with Fig. 2
in Appendix A of (ref. 6) reveals that this is the best
known linear code to date. The best known nonlinear
code, due to Preparata has the same minimum distance
(ref. 21).

At present there is no soft-decision decoding algo-
rithm for these high rate codes. However, using the
results outlined in (refs. 2,22), it may be possible to
devise a suitable soft-decision algorithm. In any
event, Fig. 6 will serve as a bench mark for comparing
the performance of any other code (block or convolu-
tional) of similar dimensions and complexity.

6.0 DISCUSSION

In this paper we have presented a class of block
codes. Many of these are soft-decision decodable. Use-
ful coding gains are achievable on the Gaussian channel,
and these are expected to be even greater for a burst-
and~random channel.
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Hardware implementation of the proposed codes
should not prove difficult. Once the signal is quan-
tized all data and reliability information can be man—
ipulated using standard logic techniques. For more
complex schemes involving finer quantization or more
powerful codes, decoder complexity is likely to rise
sharply. Assuming that data rate permits, currently
available LSI microcomputers may provide a means of
realizing such decoders, being well suited to the com-
plex bit manipulations and decisions involved.
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Fig. 3.
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Eight level soft quantized DMC
produced by a three bit quantizer
on a Gaussian channel.
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IGNAL TO NOISE RATIO PER INFORMATION BIT

(Eb/No) in dB

Performance of several extremal self-dual
codes over the Gaussian channel (CPSK
modulation).
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Fig. 5. Performance of several low rate quasi-cyclic
codes over the Gaussian channel (CPSK
modulation).
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Fig. 6. Performance of some high rate quasi-cyclic

codes over the Gaussian channel (CPSK
modulation).



