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RESUME

Pour des vitesses de transmission réduites

(R = 1-2 bit/sample) la qualité de toute
méthods de codage dépend principalement des

propriétés du quantifieur. L'erreur de
codage peut &tre réduite en utilisant les
"multipath search techniques". Cette
publication démontre quelles améliorations
on peut obtenir grace aux "multipath search
techniques": 1) quantification du vecteur,
2) codage Tree, 3) codage Trellis pour une
vitesse de transmission R = 1 bit/sample.
On y compare les résultats obtenus par les
"multipath search techniques'" avec les
méthode traditionelles utilisées pour

le codage des sources stationnaires.

SUMMARY

In the low bitrate region the performance
of any coding scheme is crucially dependent
on the properties of the aquantizer. The
coding error can be reduced by using multi-
path search techniques. This paper demon-
strates the performance of three multi-
path search techniques: 1) vector quanti-
zation (codebook coding), 2) tree coding
and 3) trellis coding working on a bitrate
R =

multipath search techniques are explained

1 bit/sample. The improvements in

in relation to conventional coding schemes

using examples of stationary sources.
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1. Introduction

At low bit-rates the performance of any coding
scheme
of the

is crucially dependent on the properities
quantizer. The poor performance of any
coding scheme when operating at a rate R of

1 bit/sample is the reason to reconsider the
possibilities of using multipath search tech-
niques which, in contrast to conventional stra-
tegies, are based on a delayed decision about
binary data representing waveform samples. Con-
ventional coding schemes are based on instan-
taneous decision: the encoder converts an input
sample x, at time n into a channel codeword ch
which contains information about x (as in
Puls-Code-Modulation (PCM)) or on x, and its

predecessors x, .. (as in Differenz-

g X5
PCM (DPCM)})/1/. %he Zegoder converts the recei-
ved channel codeword ¢h into an output sample

b A In multipath search techniques schemes (MSC),
on the other hand, future values x

n+1? “ne2t 70
are considered as well, before a {delayed) deci-

sion is made about the optimum <y to be released.

Multipath search techniques schemes can be
divided into three classes i) vector quantiza-
tion /2/ (codebook coding),

iii) trellis coding. The classes of MSC schemes

ii) tree coding and

are given by the arrangement of the output se-
quences. In vector gquantization schemes the set
of output sequences is arranged in a codebook
whose elements are not restricted in any way. In
tree and trellis coding schemes the output se-
quences are arranged in the form of a tree or
trellis. The arrangement of output sequences

in MSC schemes working at a rate R of 1 bit/

sample is shown in Fig. 1.
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Fig. 1. Classes of MSC schemes.

The heavy line indicates a codebook sequence
Yy of length N and a path through the tree
and trellis of depth L described by the binary

channel sequence 00II.

The main structure of MSC schemes shows Fig. 2.
Samples x, of the analog input signal are fed
into the buffer of length N. Let vector x des-
cribe the bufferd input seguence. The encoder
compares X with a collection of possible output
sequences y,, k=1,2,...,2N where ka=(yk1, Yoo
ey ykN)' The collection of these sequences

which are either stored or deterministically

G.

Fehn
ENCODER
INPUT: |
SAMPLES X i
OF ANALOG®] BUFFER OF | UTPUT:
SIGNAL ENGTH BINARY VALUED
| CHANNEL SEQUENCE
TORED ; £
ODEBOOK OR|
REE/TRELLIS] Yy | leHANNEL
|
OUTPUT: STORED |
BEST @——————— CODEBOOK OR |ée
SEQUENCE TREE/TRELLIS||
|
DECODER
Fig. 2. Main structure of MSC schemes.

generated when needed must be available at botn
the transmitter and receiver. The optimum out-
put sequence is the nearest neighbor sequence,
i.e. the sequence with the smallest squared
error
B, = (5 v ) (5 - z) (D

The decoder is informed about the chosen out-
put sequence (i.e. the sequence that best des-
cribe the bufferd input) by a binary channel
sequence c. On the basis of this sequence the
decoder outputs the corresponding output se-

quence or at least portions of it /3,4/.

2. Conventional Source {oding

At this point it is useful to review the main
results on source coding of stationary zero-mean
random sequences, either with Gaussian (G) or
gamma (') shaped probability demsity function
(pdf), and to compare them with the information-
theoretical bounds. Conventional source coding
gives us the upper-bound performance of multipath
search techniques, whereas the information-theo-
retical results lower-bounds the performance of
any coding scheme.

As a criterion of performance the mean-sguared
value of the reconstruction error L S i.e.
the mean-squared error (MSE)

6r2= E[rnz] = E[(xn—yn)z] 2)

will be used throughout this paper.

2.1 Memoryless Sources

For a given average rate R (bits/sample) the
lower bound D{(R) of the mean-squared error 1is
given by the rate-distortion theory as /5/
~2R g 2
x

DG(R) =2 (3a)

DL{R) < DG(R) (3b)

rv

These values lower-bound the MSE performance cf
any coding scheme operating on the appropriate
i.i.d. source samples of variance G'K“. The

MSE produced by a memoryless quantizer is
2 2 2
6 “(R) =€ _“(R) O (4)
q (R) a x
)
where €q“(R). the quantizer performance factor,
depends on the pdf of the input samples and the

shows the

number 2R of quantizer steps. Tab. 1
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rate-distortion bounds D(1) and the quantizer
performance factor qu(i) for a memoryless

source with Gaussian~ and gamma-pdf, resp.

2 2
pdf €4 (1 D(1) /e,
Gaussian source
2 exp(-x%/26,%)| 0.363 | o.25
RIT ¢,
x
Gamma source
4
Y exp(-21xi/¢,) 0.667 |o.139
VBT i
x
Tab. 1. MSE performance for memoryless sources;

Bitrate R=1 bit/sample /5,6/.

2.2 Sources with Memoryvy

As a second
Only in the
sources the

given by /5/

step consider sources with memory.
case of Gaussian autoregressive

rate-distortion bound is known and

-2R 2

DG(R) = 2 &y (5)

The variance GJi2=3126;2 is given by the source
variance and the spectral flatness measure

8&2 /7/. For example consider a first-order
autoregressive source (ar(1)-source) with an
autoregressive constant § which defines the nor-
malized correlation between neighboring samples.
In this case the spectral flatness measure
vields g&2=1—32 and the rate-distortion bound

read

° Dg(R) = 272 (1 -g*)1 2 (6)

if R>log,{(1+3). For non-Gaussian sources D, (R)
serves again as an upper bound, i.e. smaller
distortions can be expected for non-Gaussian

sources of same variance.

In a DPCM-coding scheme the difference dn be-
tween input x, and its predicted value in is
coded and transmitted. Assume an error-free
channel, then the reconstruction error rn

equals the quantization error qn_between quan-

tizer input and output. Therefore the MSE reads

e2® =€ 2 E° (7
where Gh?:E[(xn—in)z] is the variance of the
DPCM difference signal. Note that the quantizer
performance factor will depend on the pdf of the
difference signal. In the case of a Gaussian
ar(1)-source and optimum first-order prediction
with h=9/8/, i.e. the estimation of x, is

the mean-squared error is
2

&x

2 2
1 - Gq (R)g

*p=B Yy_q

2 2
6;,G(R)

x

8

2
€ “(R)
q
which can be considerably higher than DG(R)
of (5) if the correlation § between neigh-

boring samples is high and if R is small.

The difference between the rate-distorion bound
and DPCM performance can be explained by the

fact that DPCM has contraints of the quantizer
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R and of the diff-

erence signal variance Gdgﬁz 6’x2 due to quan~

performance factor € 2(11)%2-2

tization noise feedback inherent in DPCM loops.
The estimate in of = is based on their quan-

tized version, i.e.

in = f(yn-l’ Yoo ces) (9)
instead of
%, = f(xn-I‘ X o ces) (10)

This in fact yields a loss in prediction gain

described by the denominator of (8). With
multipath search techniques it is possible to

reduce the loss in prediction gain such that
2 _ 2 2, 2
€.°m - e Pmg 2e® ()
and it is also possible to narrow the gap between

GqZ(R) and information-theoretical limit D(R)

such that

qu(n) - D(R) (12)

3. Multipath Search Technigues

3.1 Vector Quantization

The vector quantization {codebook coding)

follows Fig. 2. In a codebook 2N typical output

sequences Yyt k=1,2,...,2N are stored. Each of
these sequences is indicated by a N-bit index.
The N-length buffered input sequence x is com-
pared with these sequences on the basis of the
squared error defined in (1). An exhaustive
search leads to the optimum outpui sequence de-
fined by min.k{Ek}= E,. Its index j is transmit-
ted as an N-bit chanmel sequence and the decoder
can output the optimum sequence Ij if it has
access to an identical codebook. The most im-
portant step is obviously to find the appro-
priate codebook. With restricted output values
v €124}, x =1,2,...,2% ;1 =1,2,...,N

the codebook coding procedure is that of PCM.

By choosing A =E[]xnﬂ we would obtain the
quantizer performance fachor given in Tab. 1.
However, the codebook should contain a set of
typical, i.e. highly probable sequences. Based
on a generalization of iterative procedures given
by LLoyd and Max /9/,/10/ codebooks can be pro-
duced which are either based on known probabi-~
listic mwodels or on a training sequence of

data /2/. It is also possible to pick the ele=~
ments of the codebook as generated by a pseudo-
random-noise generator and to find a good code-
book by a trial-and-error method. Hints about
the appropriate pdf can be drawn from the results

obtained from the Blahut algorithm /11,12/.

3.2. Memoryless Sources

The simulation of MSC schemes was first done
with a memoryless gamma source. Ten input wave-
form, each consisting of 32 000 samples, were

used and the results were averaged. Fig. 3.
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b SINGLE-PATH GODED QUTPUT SEQUENCE
(1-BIT QUANTIZATION)

MULTIPATH CODED OUTPUT SEQUENCE

Fig. 3. Comparision of waveforms; memory-
less gamma source.

shows a segment of the waveform of an input
sequence with its corresponding output sequence
of a memoryless guantizer and vector quantiza-
tion (R=1 bit/sample, N=8). Fig. 4 compares the
normalized error variance eqz(i) of vector
quantization a memoryless gamma source with

i) iterative codebooks and ii) randomly gene-

rated (stochastic) codebooks. In both cases

2
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Fig. 4. Normalized performance factor Eq
vs. codebcok length N;
memoryless gamma source, Bitrate R=
1 bit/sample.

of codebook construction the normalized error
variance €q2(1) decréases with increasing code-
book length N. For example with N=8 the norma-
lized error variance € 2(1) yields 0.26 instead
of 6q3{1)=0.667 in the case of conventional
quantization. The decreasing error variance
€ 2(1) for gamma sources are mainly due to the
fact that infrequently occuring samples of high
amplitude find the appropriate reconstruction
value (compare Fig. 3.). Examination of the code-
book sequences have shown that in very many cases
each sequence consists of one high amplitude
value and N-1 values of typical small amplitudes
most of them close to zero. For large N the dis-
tribution tends to be close to that given by
the Blahut algorithm /12-14/.

A scheme has been proposed where N-1 elements of
Y are set to zero. For example in a codebook of
length N=4 the first eight sequences have only
one nonzero value ; the ‘second eight sequences
are filled similary with one nonzeroc value A‘.
This five level codebook with elements 0,%A A
is easy to implement. No time consuming itera-
tive procedures or trial-and-error methods (in
stochagtic codebook generation) are nescessary

to find an appropriate codebook. The optimum

050 -

050 ¥

£,(2) £p(2)

Fig. 5. Resulting pdf for optimization the
nonzero values in codebook coding;
memoryless sources with a) Gaussian
and b) gamma pdf ( the input pdf is
shown by the dotted line).

nonzero values can be found by optimization of
the reconstruction values of a N-level quanti-
zer for a memoryless source with samples zj. The

samples zj can be determine from the input source

|2 = max{lxi|} i=1,2,...,N (13)

j=1,2,...

samples X as

The optimization of A ,A * must be done with
respect to the pdf of the quantizer input samples
z; (Max-quantizer /10/). The pdf of the samples
z . for Gaussian and gamma input sources are shown
in Fig. 5. With optimized values A=3¢5'x and

A= &, 2 normalized error variance qu(l) =

0.3 was realized for a memoryless gamma source
(Point A in Fig.4). Evaluation on the pdf of

the reconstruction sequences shows, that the pdf
tends to optimum pdf obtained by the Blahut al-
gorithm.

3.3 Tree and Trellis Coding

Tree and trellis coding algorithms are most
easily understanding by considering the gene-
ralized DPCM decoder structure of Fig. 6.

At the decoder any binary chammel sequence of
channel codewords cne{b,{} is D/A converted to
an innovation sequence in of analog values taken
from a 2R-ary alphabet. If R=1 bit/sample we
have ine tt&; in adaptive controlled systems
these values may differ from sample to sample.
The innovation sequence is fed into a linear
filter (time-invariant or adaptive) whose out-
put is the reconstruction sequence Yn+ The set

of all sequences can be arranged in a tree or
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Fig. 6. Generalized DPCM structure.

trellis structure having two branches per node
if the channel codewords are binary. Each chan-
nel sequence defines a unique path through the
innovation tree (trellis) and the corresponding
- generated via the linear filter - recon-
struction tree. In a tree coding scheme the
number of nodes increases exponentially with
the ‘tree depth L. In order to limit the number
we can make use of a specific structure called
trellis (Fig 1). Here the number of nodes is
iimited to ZK per sample {whers K is called the
intensity of a trellis). During the initial fan-
out, i.e. as long as the trellis depth L is less
than K, the number is smaller and given by 2L.
In other words, the trellis starts as a tree
which then collapses to a specific structure of
the trellis if LaK.
Using the channel sequence <, calculating the
innovation sequence on a basis of a given algo-
rithm known at the encoder and decoder a detexr-
ministic tree (trellis) coding scheme fesults.
on the other hand, in a stochastic scheme the
channel sequence L is used to determine innova-
tion values out of a set of random variates either
stored or generated when needed by a pseudo-
random-noise generator. The statistics of the
random variates, popul#ting the nodes of the
tree (trellis), should by determined beforehand
with respects to the statistics of the source/12,
15,16/. An example for the potential of
stochastic trellis coding memoryless gamma

sources is given in Fig. 3 (stochastic trellis).

3.4. Sources with Memory

A few examples may show the potential of tree
and trellis coding. Fig. 7 shows the results to
encode ar(l)-éources with Gaussian and gamma
innovation, resp. The improvements in signal-{o-
noise ratio (SNR:lOloglo 6*2/6}2) in tree coding
schemes over conventional DPCM (equivalent to
tree depth L=1) yields with increasing depth L
up to 1.3 dB and 2.9 4B, resp. These improve~

ments are in agreement with the loss in predic-
. s 2 2

tion gain in 4B (-1010310(1-é§ (1):? )). The

comparision of the prediction gains (GPR) of

Gaussian ar(1)-sources with various correlation

(0 SNRRDﬁb
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4,2 it e

e ———
0 1 23 4 5_

Fig. 7. SNR in tree coding schemes vs. tree
depth L; ar(1)-source (Gaussian- and
gamma innovation with autoregressive
constant @ =0.85), Bitrate R=1 bit/
sample.

coefficients § in DPCM-systems and tree coding
schemes together with the theoretical predic-
tion gains without loss (GPROF) and with loss
(GPRMF)shows Fig. 8. The gains GPR,. and GPRy,

are adequate to -1010310 X;z and
-1010310(3;2/(1- eqz(l)gz)), resp. In all cases
the loss of prediction gain is negligible with

i1 E A C
Y TR V=

o DPCM +
+ TREE L=5 '

8

Fig. 8. Comparision of prediction gains in
DPCM in tree coding schemes; ar(1)-
source (Gaussian innovation) with
various antoregressive constantsg,
Bitrate R=1 bit/sample.
Various authors /3,4, 17-19/ have found similar
improvements in the range of 1-3 dB. In all these
cases the improvements can be explained as being
due to the compensation of feedback gquantization
noise and therefore they can be estimated to be
upper-bounded by the loss in prediction gain.
It is obvious that the performance of the MSC
coders is still restricted by the quantizer
performance factor € 2(R). Further improvements
can be obtained by applying a stochastic tree-
or trellis coding scheme. As an example Fig. 9
compares the signal-to-noise ratio of determini-
stic- and stochastic trellis coded gamma source
(ar(1)-source with < =0.85). The results of
Fig. 9 are based on a trellis depth L=1024 which
implies a coding delay of 1024 samples (intole-
rable in speech coding). We note, that the
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imbrovement in SNR over DPCM is significantly
higher if the trellis intensity K is large enough.
With K=8 an inprovement of neafly 7 dB (10.8 aB
instead of 4.2 dB in the DPCM scheme) is obtained.
The comparison of waveforms demonstrates the po-
tential of stochastic trellis coding (Fig. 10).
The stochastic scheme (c¢) is able to follow the

SNR
dB)

54
4,2 men ]
(DPCM)

o 1 -] 8 K

Fig. 9. SNR in trellis coding schemes vs.
trellis intensity K; ar(1)-source
(gamma innovation with autoregressive
constant § =0.85), Bitrate R=1 bit/
sample.

INPUT SEQUENCE

b SINGLE-PATH CODED QUTPUT SEQUENCE
(1-BIT DPCM)

MULTIPATH CODED QUTPUT SEQUENCE

Fig.10. Comparision of waveforms; ar(1)-
source (gamma innovation with auto-
regressive constant @ =0.85).
input signal (a), whereas the slope of the out-
put sequence in DPCM scheme is bounded by the
quantizer stepsize qne {tdj. To preserve the gain

over conventional DPCM the trellis depth L can be

reduced by a factor of 1/4 to 1/16, i.e. a delay of

256 and 6% samples, resp./13 /. In this case the
random variates populating the nodes of the trel-
lis during initial fanout should be redefined

to E[Ixnﬂ to prevent insufficient decisions during
the initial fanout.

Conclusions

In this paper it is shown, that MSC schemes are
able to improve the performance of waveform co-
ders up to 7 dB on expense of increasing complex-
ity (in contrast to conventional coding schemes).
An exhaustive search algorithm was used to obtain
these gains whereas better algorithms such as
M-L-algorithm /16/ and Viterbi algorithm /20/

G. Fehn

are known. It is also shown, that the perfor-
mance in deterministic schemes encoding sources
with memory are upper bounded by the loss in
prediction gain and thus in the range of 1-3 dB
(or an equivalent gain if the source is not of
first order). Stochastic schemes do not know
such restrictions; they are upper- bounded by
the information-theoretical limits. At this point
it must be mentioned that this bound implies an
infinite delay: such MSC schemes are not reali-
zable. However, simple codebooks and tolerable
delays in trellis coding up to 128-256 samples
allow gains in the midrange of 4 dB in compa-
rision with conventional coding schemes even if

real sources (such as speech) /12/ are encodsd.
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