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RESUME

Cette publication examine le dessin des filtres digi-
taux de deux dimensions etd'une résponse d' 1mpu1s1on
infinie de démi-plan, qui possédentune symétrie octago-
nale. Nous commengons par unestructure sérielle et nous
réduissons le nombre des parametres du filtre en 1mpo-
sant la condition de la symétrie octagonale. Par conse-
quent nous choisissons les sections du f11tre de manié-
re que le filtre qui resu]te posséde un dénominateur
non-separable qui, neanmo1ns, peut 8tre controlé faci-
lement pour stabilité en controlant une s1mp]e 1nequa—
1ité. Ainsi, les coefficients sont 0pt1mlses par 1'uti-
Tisation de la technique non- 11nea1re d' optimisation de
F]etcher Powell. Les fz]tresqu1 résultent possedent des
réponses de fréquense qui ont une bonne symétrie circu-
laire et des bands étroits de transition.

SUMMARY

This paper considers the design of 2-D IIR half -
plane digital filters, which possesses octagonal sym-
metry. We start from a cascade structure and by impo-
sing the condition of octagonal symmetry we reduce
the number of filter parameters, We subsequentiy cho-
ose the filter sections in such a way, that the resul-
ting  filter possesses a non-separable denominator,
which however can be easily checked for stability, by
chequing a simple inequality. The coefficients are
then optimized by using the Fletcher = Powell non-1i-
near optimization technique. The resulting filters
possess freguency responces which have good circular
symmetry and narrow transition bands.
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I. INTRODUCTION

Buring the past few years there has been a growing in-
terest for the design of 2-D digital filters. Among
the different approaches used, computer-aided optimi-
zation techniques [1] - [5] have proven efficient and
useful-However the major difficulty with these appro-
aches has been the ability to check and ensurethe sta-
bility of the resulting 2-D transfer function.

In a variety of applications some kind of symmetry
in the frequency response is desired for the filter
designed. Specifically circular symmetry is very desi-
rable in applications of image precessing and for this
reason different methods for the design of 2-D recur-
sive filters which approximate this kind of symmetry,
have been proposed [g - [16]. In (11 it was shown
that the circular symmetry can be achieved by adigital
transfer function only approximately. Rajan and Swamy
9], [12]- [15] developed the constraints on 2-D tran-
sfer ?hnctions to have quandrantal, diagonal and octa-
gonal symmetries, as well as the corresponding stabi-
lity conditions to be satisfied,Furthermore the symme-
tries impose constraints on the filter coefficients,
which result in a significant reduction of the indepen-
denit. parameters for the optimization,

The above mentioned references for the design con-
cern quarter-plane transfer functions.As it is remar-
ked in [16] the quarter-plane design approaches will
not yield approximates which are arbitrarily close to
a prescribed specification by increasing the order of
the filter. This is one of the reasons for the recent at-
tentionon the desiagn of hatf-plane filters, with aporoa-
ches mainly based on spectral factorization [16] -[17].

In this paper we introduce a design technique for re
cursive 2-D half-plane filters with octagonal and ap-
proximately circular symmetry, under the constraint
that the resulting filter be stable. To this end, by
applying the symmetry constraints for octagonal sym-
metry given in [14] for a simple non-trivial case, ve
obtain a 2-D rational transfer function of low order.
The overall transfer function consists of terms of the
above form connected in cascade.

Causal stable rational functions designed to date *o
satisfy octagonal and circular symmetry must have the
denominator separable [9],[10],[12], [13%. Furthermore
low-pass transfer functions with separable numerators,
designed by optimization techniques in [2]& [19] to ap-
proximate circularly symmetric frequency responses,
turned out to also have separable denominators. The
advantage of these designs is that the stability tes-
ting reduces to that of checking the stability of 1-D
polynomials, which is considerably simpler. However,
transfer functions which are separable or have sepa-
rable denominators cannot be used to design filters
possessing sharp cutoff characteristics [13]. The half-
plane filters presented here are not required to pos-
sess separable denominators, however their stability
can be ensured by only checking the relation of two
parameters of the denominator polynomial of the trans-
fer function of each term.

1I. DEFINITIONS AND NOTATION

We consider a general 2-D infinite impulse response
(IIR) transfer function represented by

P{z,,z,)
H(z,z,) = ——2 (1)
z;,2,)
vhere P,Q are polynomials in z sZ5. The frequency res-
ponse of H(zl,zz) is obtained éy substituting
-jw -jw
z,=e 1 s 2,7 J 2 where Wi W, are the normalized

frequencies in radians,
notation of [14].
The macnitude-squared function of (1) is given by

In this paper we follow the

Flw ,w,) = e ) (2)

*
where H is the transfer function H(Zl,ZQ) with complex
conjugate coefficients, Let W the 2-0 frequency plane

{(waswp)/ i, < m, fw, | < .
[efinition 1. Octagonal Symmetry : F(wl,wz) is said to

possess octagonal symmetry, if F(w;,w,) possesses quan-
drantal symmetry and symmetry about diagonals simulta-
neously [14], i.e.

-1 -1, -1 \ -1
H(zl,ZQ)H(zl \Z, )f H(zl ,22)d(z}f221)
= H(ZZ azl)H (22 527 ) (3)
befinition 2. Circular Symmetry: F(w_,w.) is said to

1°"2
possess circular symmetry if it is invariant on any
circular path around the origin in the W plane. In this
case F(wl,w2) must be of the form [13]
2.2
)

F(wl,w2)=FS(wl+w2

(4)

where FS(.) is a single variable function.

We consider here the half-plane filters of the type
S,+ (one of the eight standard types introduced by
Ekstorm and Woods [16]. Similar constraints and designs
can be easily derived for the other types.

An S++ type half half-plane filter can be described
as[14}

A(zl,22) ;
H(21322)= 8(21,22) ( )
where Ma Ma N
_ ) m m._n
A(zl,ZQ)-a o z a7+ Z Z a 7.7,
m=1 m=-M_ n=1
and
Mb m Mb Nb m._n
5(21’22):boo+ Z bmozl * Z Z bmn zl Z2
m=1 m——Mb n=l

For the above half-plane filter, it was shown in [13]
that the following conditions are sufficient to ensure
stability:

Ma
1) z, 8(21’22)
of its sinoularities or zeros lies on {|z ]=1, [z ]<1},

is a mix-min type polynomial, i.e.none

2) B(zl,O) is a minimum phase polynomial in z,.

We now define P, Q which are polynomials in 2,5 2, 88
follows:
P(z.,2.) & zMaA(z z,)
ZyaZy) = 2y AlZ)6Z, (6)
Qz,.2) 2 2P Bz, 2,)
202y = 1272

1171, GCTAGONAL SYMMETRY GF THE TRANSFER FUNCTION
15] , that the numerator

It has been shown in {14] , [
of the form (6) - should to satisfy the octagoqa] symmet-
ry constraints (3) and the stability constraints.

A. Numerator. The numerator polynomial A(zl,22)

type half-plane filter possesses octagonal symmetry in
its magnitude response if and only if, the polynomial
P(zl,22), defined in (6), can be written as
N
P(z1,22) = K I P.(zl,z

j=1 t 2)

an S
++

(7)
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vhere
Pi(zlazz)a is= 1:2’---9 N
are irreducible factors of P(zy,z,), such that for

each i, 1<i <N, there are “unique j and k (i may
be equal to j and/or k), for which

o1 -1, 9 B
P.(21,25) = Pj(zz,zl) or Pj(zz 221 Y2502, (8)
and
a B
P.(z1,22) = Pk(zll,lz)zxk or Pk(Zl’Zzl)sz (9)
where

a, = order of Pi(zl,zz) w.r.t. z;

Bi = order of Pi(Zl,Zz) w.r.t. 2z,
The various factors that could be present in P{zy,
%?) satisfying the above requirments are given in
1

B. Denominator, The denominator polynomial B{(z{,z,)

of an S, type half-plane filter possess octagonal
symmetry in its magnitude response, if and only if,
the polynomial G(z;,z,) defined in (6), can be writ-

ten as
Nl+. 2. = 0. {2.Y 0. {2.Y.0. (2. 2.3
M\cfresd ‘(J(+O)\L1/"(J_(O+)\“A/ “(J(++)\“1,“Ala
-1
Q3@+)(Zl ’ZZ)Z? (10)

where

Q3{zy,24) = Qa(zp,29) (11)

Q;(z,,0) = Q3(0,2z,) = constant {12)

and o = order of Q3(z7,25)

The notation Q(i 1 means that G(z,,z,) is free of
s

zeros in Zij where [147]

w.r.t. Z1

Zij é {(21,22)/21 eRli and Zy GRZ]} for 7,J {+,-,%,0}

and

R, , = {zk/[zklf 1} R

- = {zk/|2k|3 1}

k-

Rk* = {zk/[2k|: 13 RkO =

Usually we identify the subscripts "+' with min,
"-" with max and “*" with mix, Using this notation
Pl will be called a min-min phase po]ynomia],P(* 3

a mix-max phase polynomial, P

{z, /12, ]> 0}, k=1,2

(+0) a minimum phase

polynomial in z; and so on.

1V, DESIGN OF RECURSIVE FILTERS WITH OCTAGONAL SYM-
METRY

A. Choice of Design Structure

We now choose the filter transfer function to be of
the following cascade form for several reasons [[1].

(2)
L P (21,22)
H(ZI,ZZ) = A TT ——‘(—9)—_-——~_
=1 Q "{zy,z;)

where L is the number of sectionsin cascade and A is
a positive gain constant. (2)

In the following we will consider the P "/(z,,z,) ,
Q(Z)(

(13)

zy,2,) to have the form of A(zl,zz), B(z,,2,)

defined in (5). Namely, A(z;,z5), B(z;,z,) are no poly-
nomials because include negative powers of z;. There-
fore the factors of the form z? ) z? will not be incor-

porated. (2) )
The particular choise of P 7" (zy,z5), Q7' (21,25)

satisfying the requirements given in Section III is now
made in order to obtain one of the simpler but non-tri-
vial form for (13). To this end we choose

P(l)(zl,zz) = agl) [(i1+zf1)+(zz+z£1ﬂ +-a§l)[}zl+z]1)

(z2+z;1)+1]-22 (14)

which satisfies the condition (8).
We also choose

(2) _ (%) -

Q1(+0) (Zl) = Ql(0+) (22) =1 (15a)

Q;%i+) (21,25) = b{*)zyz,4b") (15b)
and substitute to (10) to obtain
Q(k)(zl,zz) = [b%2122+b2(2{j [bgl)21122+b£2)] (16)

B. The Optimization Algorithm

The optimization algorithm used, is the Fletcher-Po-
well non-linear optimization [20] which is formulated. as
an zpdesign technique. In this paper we use the meansqu-
are error criterion, i.e. p=2. Let the magnitude cha-
racteristic Y= [Ynm]def-ined»_on the discrete set of fre-

W™, Wiy,

quency pairs ( m=1,..., Msn=1,...,N,

betong in a region S of the plane (wy,w,). The region
S is considered to be the triangle whose vertices are
the points (0,0), (n,0), (0,n).

Let the
0=[01,0] (17)
where
1 1 g
of = Lol Lol .,af®, af?, .. .a{t) afth

il

RS RN CONNS GO U

and the ai*) ,b{%, i=1,2, 2=1,..., L are the expli-
cit parameters of the transfer function . The dimension
of the vector 0 is (Tx1), where T=4L.

The performance index is given by

ol - [o{V) uf)

2
D [[Hmnl-vmn} (18)
where
(L)
L Pz, sz, )
Hmn= H(Zlm’ZZn )=A (2) 2 - Aan

2=1Q (zlm’ZQn)

and
g™ _jwén)

<Zlm’z2n) =(e : & )

The problem is to select the elements of the vector ¢
that minimize the performance index J(0) . Stability
is considered later. The coefficient A (which is the
only linear parameter of the objective function) can be
optimized separately, by differentiating {18) with res-
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pect to A, by the relation

M N
L Yo Pl

A TR > (19)
mzl nzl |an|

The optimization algorithms calls for the computa-
tion of the gradient vector VJ. To reduce the quanti-
zation error in the calculationsof.VJwechoose an ana-

lytical approach in the computation. To this end, using

(13),(18) we obtain

M N
A N N LI AR Ny ST
L - mrr 3Q, “opt! mn'-|

8~(Di ne1 nél]_-opt"mn‘
(20)
The derivative term is simply

Y F A jﬂi@ﬁl—
576; Lopt ‘| mnI:l " Popt 39,

A 1 R * 2 an
opt 'F € an' awi

man

B AOp‘t]an| Re [Xi(m:n),] (21)

since aAopt/awi is zero when assumed over the grid
(w(m) . w(n)), m=1,..., M, n=1,,..,N, already defined
as~its op%imum value.

The quantities Xi(m,n), i=i,...,T are the elements
of the vector X , “defined by

X= D}’Xl 1.1 (2) (2) (=) (%) (Lh

2 X3a Xq’--09X1 ,X2 ax3 s Xy seansy Xy

where -1 -1
xgz)_ 210t 21t 200 20
h (%)
P (Zlm’ZQn)
1 -1
xéi)_ (z, +z, )z, +2) )+1
-— .
P (Zlm’ZQn)
2 -1
x{2) 2byzp 4by(zy vz )
- %)
7z z,0)
-1
b, (z) ¥z, )z, +2b,
. Q(Q)(z z, )
im’“2n
and
m=1,2,..., M, n=1,2,...,N

C Stability Test and Stabilization

The denominator (16) of the S_,_ type half- plane
filter is stable if the polynomial of each section 2,

(%) {2) (2)

U344y (z1,22) = by 2125 + by, 2= 1,2,..05L

is free of zeros in the region Z = {(zy,2;)/]21]< 1,
|z5|<i}. It is readily seen that a sufficient condi-

tion for the satisfaction of the previous condition 1is

(2) ()
[bp | > [by | (22)

Consequently the stability test is very easy. In each
final step of the optimization procedure,(22) is tested

IT it is not satﬁsfied,|bgl)i is reduced (or'lbgg)l is
increased) and the optimization is repeated. This ap-
proach simplifies the problem of checking the stability
which is a complex problem for the case of nonseparable
denominators.

V. EXAMPLES
Example 1. One section low-pass filter.

The specifications here were passband and stopband
radii of 0.1m and 0.3n respectively. The maximum rip-
ples in the passband and stopband regions are 0.15 and
0.3 respectively.

134 grid points are chosen on the region S at the in-
tersections of 34circleswith radial lines.

In the stopband, transition and stopband regions the
number of radii are taken to be 12,10,11 and the num-
ber of equidistant points per radius are taken to be 5,
3,4 respectively.

The values of the parameters a;, as, by, by , A are
given in Table I. In order to obtain a picture of the
magnitude response, the desired values and the corres-
ponding values of the designed filter are given in
Table Il for a number of radii.

Table I

CONSTANT
A 2 2y by ba

0.454794 | 2.05812 1.73565 3.80538 -6.39386

Table II

Radius of Desired Corresponding
circle value values

0.008n 1.0 1.13

0.1n 1.0 0.82

0.2n 0.5 0.46

0.3m 0.0 0.3

0.5m 0.0 0.2

1.0m 0.0 0.015

Example 2. Two sectionslowpass filter.

The specifications are similar to Ex. 1. The maximum
ripples in the passband and stopband region are 0.096
and 0.175 respectively.

The values of the estimated parameters are given in
Table III and values of the magnitude response in
Table IV,

Table III

CONSTANT {SECTION K K
A k ay a by

1 2.02749 1,77205 2,51682 -7.45759
2.2192
2 2.02749 1.77140 2.51511 -7.4533
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Table IV
Radius of Desired Corresponding
Circle value values
0.0017wn 1.0 1.07
0.1m 1.0 0.904
0.2m 0.5 0.53
0.3m 0.0 0.175
0.5n 0.0 0.023
1.0m 0.0 $.002
Example 3 : Three sectionslowpass filter,

The specifications are similar to Ex. 2. The ma-
ximum ripples in the passband and stopband regionsare
0.08 and 0.097 respectively,

The values of the estimated parameters are given in
tabTe V and values of the magnitude response in Table
VI.

Table V
k
CON:TANT SECIION a§ a§ b§ b
1 3.11691 2,58815 1,36450 -16,05326
7920.72; 2 -2.38948 2.57605 1,22773 -15.53927
3 2.38864 1.48668 1.50611 -17.060
Table VI
Radius of Desired Corresponding
circle value values
0.0017n 1.0 1.06
0.1m 1.0 0.92
0.2n 0.5 0.55
0.3n 0.0 0.097
0.5m 0.0 0.0076
1.01 0.0 0.026

In all the above cases, very good circular symmetry
has been attained, since the values of the magnitude
response in the grid points of each radius are almost
the same.

VI . CONCLUDING REMARKS

1) In this paper results are presented for computer-
aided design of 2-DIIR half-plane digital filters
with octagonal symmetry. There is great possibility
of choise of the structure of the rational function,
satisfying the symmetry and stability constraints.
The form of the function used simplifies the opti-
mization procedure. However more complex and higher
order functions have more possibilities since they
possess a greater number of degrees of freedom.

2) The design technique proposed is applied to
half-plane filters, which are more efficient than
the usually designed quarter - plane filters,

3) The nonseparable denominator used gives the pos-
sibility to design filters with sharp cut-off cha-
racteristics . Furthermore their stability can be
very easily checked by checking the satisfaction of
a single inequality.
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