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RESUME

On traite ici le probléme de la détection de man-
oeuvre qui se produit dans 1'analyse de la motion de
véhicule comme un probl®me inverse improprement posé
de 1l'estimation du signal. On définit la manoeuvre
comme 1'occurence d'une variation considerable et lo-
calisée de la courbure du trajectoire. Du fait que
ce probléme soit improprement posé, 1'evaluation di-
recte numérique de la courbure en fonction du temps
ou de la distance impliquerait la différentiation re-
petée des données du trajectoire, possiblement en pré-
sence du bruit 2 haut niveau.

Afin de contourner ces difficultés, une technique
convenable de régularisation, utilisant 1'information
a priori tant sur les statistiques que sur la forme
du signal a 8tre recupere, fut développée. On defin-
it un probléme variationel en utilisant une formule
de la vraisemblance maximum sous les statistiques due
signal et du bruit. L'information a priori de la for-
me du signal est utilisée pour imposer des constrain-
tes sur la solution. Un algorithme iteratif est pre-
senté afin de résoudre le probl¥me de 1'optimisation
convex contrainte qui en résulte. L'algorithme pour-
voit aux besoins des deux assomptions fondamentales
sur la forme du signal a &tre recupéré.

Les applications pourraient comprendre les moy-

ens d'éviter les collisions de navires, le repérage

passif et le contrBle du traffic aérien.

SUMMARY

The problem of maneuver detection which arises
in vehicle motion analysis is treated Rere as an 1l1l-
posed inverse problem of signal estimation. The mane-
uver is defined as an occurrence of a considerable and
localized variation of the vehicle path curvature.

Due to the ill-posedness of this problem, direct num-
erical evaluation of the curvature as a function of
time or range would imply the repeated numerical diff-
erentiation of the path data, possibly in the presence
of the high-level noise.

To obviate these difficulties, an appropriate re-
gularization technique was developed which utilizes
the a priori information both on the statistics and on
the shape of the signal to be recovered. A variation-
al problem is defined by a maximum likelihood state-
ment under specific statistics of the signal and the
noise. The shape information is utilized in the form
of constraints on the solution. A finite iterations
algorithm is used to solve the resulting constrained
convex optimization problem. The algorithm provides
for two basic assumptions on the shape of the signal
to be recovered,

The problem of erroneous or incomplete a priori
information is addressed. Applications may include

ship collision avoidance, passive tracking, and air-

traffic control.
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I. Introduction

In vehicle motion analysis (VMA), a maneuver can
be defined as an occurrence of a considerable and lo-
calized variation of the vehicle path curvature. Man-
euver detection, especially on an on-line basis, is
important in the problems of ship collision avoidance,
air traffic control, passive tracking, etc., and there-
fore has attracted the attention of researchers in the
framework of VMA. A standard approach to the problem
is exemplified by [1] where a statistical analysis
based on the Kalman filter approach is utilized.

A suitable hypothesis on the maneuver or a num-
ber of hypotheses are normally assumed in VMA., Typi-
cal maneuvers on a plane are shown on Fig. 1.

The variation of the path curvature at the mom-
ent of the maneuver is, for case 1,a (Mzig maneuver"],
a narrow pulse ("spike"). In the cases 1,b and 1,c
the curvature undergoes a step variation.

Since the path curvature is adequately described
by the second derivative of the path, whether in rec-
tangular or polar coordinates, or in parametric form,
an obvious alternative approach to [1] and similar
works is the direct recovery of the second derivative
of the path.

According to this approach, the problem is repre-
sented as an inverse problem in linear spaces X and Y
of real-valued functions:

Kz(t) = u(s)
1.1)
K:X =+ Y
with u being the vector of path data, z its second de-
As a

rivative and K the map of double integration.

Hilbert-Schmidt integral operator, this map is
ot
Kz(t) =

l

0

(t-s)u(s)ds. (1.2)

This approach, however, presents obvious difficul-
ties. Since the operator K has an unbounded inverse,
the problem‘represented by equation (1.1) is an ill-
posed problem of the type found in signal processing

theory and related fields [2-4]. It relates to the

well-known fact that if data are contaminated by heavy
noise, as is usually the case in practice, the recovery
of the second derivative presents formidable difficul-
ties. Probably, for these reasons, this avenue for man-
euver detection has remained unexplored.

Recently, though, some efficient approaches known
under the collective name of regularization methods
have been developed to .deal with ill-posed problems.

In view of the availability of such techniques, the
solution for the inverse problem of maneuver detection
no longer seems unrealistic.

Any regularization method can be interpreted as
the utilization of some information available (or assu-
med) a priori about the solution. The usual approach
to regularization consists of imposing smoothness con-
ditions, either deterministic or statistical. This way
alone is, however, not as efficient as a new regulari-
zation approach, namely, descriptive regularization,
which requires a priori information on the shape of the
solution to the inverse problem (1.1). This require-
ment fits well into the specifics of the maneuver de-
tection problem.

In [5], a comprehensive method of descriptive re-
gularization was suggested which utilizes constraints
on both the statistical smoothness of the solution and
the shape (conditions of non-negativity, or monotoni-
city, or convexity, etc.}. Such shape constraints as-
sign the solution to a compact set in X, thus turning
the problem into a well posed one, and the smoothness
conditions in their turn contribute to the obtaining
of a reliable solution by taking into account the known
statistical properties of the signal and the noise. In

this paper, we present the application of the method

developed in [5] to the case of maneuver detection,

2. Descriptive Regularization for Zig Detection

We will consider the finite-dimensional approxima-

tion of equation (1.1)

Kz =

» (2.1

12
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where the values of the observed path data vector zy >0, i=1,2, ,n (2.6)
§€Rm are corrputed by the additive noise vector yeRm or

z. €0, i=1,2,...,n . (2.7)

(2.2)

[k

=u+vw,

the solution is represented as the vector gsRn, and K

is the m x n matrix

1 0o 0 0 . 0
2 1 0 o 0
3 2 1 0 0

=1
K= o . (2.3)
n n-1n-2 n-3 ., . 1
m m-1m-2m-3 . .
The corresponding normal equation is
K'kz = K'u (2.4)

We will assume the noise normal and unbiased,

WweN(0,0), with u and w uncorrelated, and the value of

standard deviation o of the noise specified. The var-
iance matrix of the solution z,
= 2.5

will also be assumed given.

If, at this stage, we restrict ourselves to the
case of zig maneuver, we know a priori that the solu-
tion has the shape of a narrow pulse ("spike'). A
less restrictive condition turns out to be sufficient

for the efficient regularization of the problem:

i

The method of maneuver detection consists in check-
ing both the hypotheses (2.6) and (2.7), i.e. the "sol-
utions' to (2.1) are found under such constraints. If
a "solution" is identically zero, then the correspond-
ing hypothesis is untrue. If both versions yield a ze-
ro "solution", then no maneuver occured in the interval
considered, Depending on the relative importance of
obtaining fast results versus reducing the complexity
of the software, the hypotheses can be tried sequenti-
ally or in parallel.

Having this in mind, we will consider the follow-

ing variational problem:

find 2, 2eR”, such that

M(2) = inf M(z) (2.8)
and

M(z) = (2.02) - 2(K'%,2) , (2.9)

D=KWK=o1!. (2.10)

It can be shown that this variational problem yie-
1ds the maximum likelihood estimate to the problem
(2.1)

2.-1 T~

5= ks Y T, (2.11)

i.e. the regularized solution to (2.1) under the condi-

tions of statistical smoothness.

To use the shape information, we will modify this
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problem by restricting 2 to one of the classes

E' := {z : zeR", 7 > 0} (2.12)
or

E := {z : zeRY, z <o}, (2.13)
and thus reformulating the variational problem:

find 2, geRn, such that
M(%) = inf M(z) (2.14)
2¢E , (2.15)

where E=E orE=E,

Minimization of M(z) under constraints (2.15) is
a quadratic optimization problem. To solve this pro-
blem, a finite iteration procedure was developed [8]
which consists of the selection of an appropriate sub-
space based on the Kuhn-Tucker optimali;y check.
Since in our case the objective function is convex
and the minimization is performed on a convex set, the

Kuhn-Tucker optimality conditions are both necessary

and sufficient.

3. Experiments

Several numerical experiments of zig detection
were conducted. On Fig. 2-5, the solid lines repre-
sent the idealized paths and the dotted lines the act-
ual ('moisy") paths. In the first examble (Fig. 2, a-
b), the capability to discriminate in the zig direc-
tion (right or left maneuver) is demonstrated for two
idealized paths. In Fig. 3, a-c¢, the ability to de-
tect a maneuver in the presence of noise (gaussian)
is examined while increasing standard deviation 0. In
the third experiment (Fig. 4, a-c), the sensitivity
of maneuver detection to course changes of different
magnitudes is studied. The last experiment (Fig. 5,
a-c) shows the capability of the method to detect a
zig maneuver while decreasing the size of the data
set n. It can be observed that two measurements af-
ter the maneuver were sufficient to detect the maneu-
ver.

On the curvature graphs, a number of '"false

alarms" appear. They can be discriminated from the

actual maneuvers by their respective magnitude levels.

4, Discussion

The distribution of the eigenvalues of the normal
matrix KTK serves as a good measure of its ill-conditi-
oning and, indirectly, of the degree of ill-posedness of
the inverse problem (1.1), Evaluations yield the ratio
of the smallest eigenvalue to the biggest one for n =
m = 200 to be in the area of the minimum computer
roundoff in double precision., Therefore, since all the
pieces of available information are linearly indepen-
dent, the problem turns out to be of full intrinsic
rank [7] and the recovery of the second derivative can
be classified as amildly ill-posed problem. It is re-
commended in [7] to solve mildly ill-posed problems by
standard regularization techniques, which are reduced
to imposing smoothness conditions.

If the constraints of the statistical smoothness
alone are imposed on (2,1), the equation
kT

«x + o%chz = k5, (2.16)

i,e, the Euler-Lagrange equation to the variational
problem (2.9), will yield the regularized solution,
The presence of the positive definite operator o?c!
makes the matrix in the left-hand side of (2.16) posi-
tive definite, and thus the variational problem is tur-
ned into a well-posed one. Numerically, it means that
all the eigenvalues Ai of the matrix K'K are shifted
to safely positive values [6]. This shift represents
the effect of imposing the condition of statistical
smoothness, which is a statistical equivalent to the
Tikhonov regularization [2].

Although the generalized cross-validation techni-
que suggested in [7] compares favorably to the Bayesian
estimation technique in that it does not require a pri-
ori knowledge of the noise variance, it is, essentially,
an eigenvalue shifting technique, like other techniques
utilizing constraints of statistical smoothness. 1In

the presence of heavy noise, however, the statistical

smoothness technique results in the loss of the compo-
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nents with small eigenvalues. Noise considerably re-

duces the effective rank of the problem. Experiments
show that with the values of the standard deviation o
of the noise as in the examples above, the classical
techniques for the recovery of the second derivative,
including Tichonov's regularization, fail to detect a
maneuver with any reliability. The non-negativity
conditions, by contrast, have a strong regularizing
effect, which can be explained as '"disbalancing" the
high-frequency noise components in the solution and
therefore suppressing them in the integrand of (1.2).
This is achieved without overdamping the solution and
yields fairly reliable results in the presence of
heavy noise. Experiments show that in this case the
solution becomes to a large degree insensitive to the
incompleteness of or errors in the statistical data
on the noise and the signal to be recovered.

Some other types of maneuver may be covered by
an appropriate extension of this technique. The ca-
ses (b) and (c) in Fig. 1 can be reduced to the pre-
sented technique by replacing the operator of double
integration in (1.1) by triple integration. Some

other types of maneuvers would be more difficult to

reduce to the type considered here.
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