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RESUME

On étudie une nouvelle approche du pro-
bléme d estimation non linéaire., La solu-
tion de i’équation d état est remplacee par
un modéle Markovien a complexité finie. On
résoud le probléme de 1 estimation maximum
a posteriori M.A.P. en utilisant un al-
gorithme séquentiel comme 1 algorithme de
Viterbi.

On présente une application au probléme
classique de poursuite de phase et on com-
pare les résultats a ceux d'un filtre de
Kalman étendu; quand le niveau de bruit est
fort 1 amelioration est spectaculaire. Pour
cette application le cout des calouls est
faible et 1 'algorithme de Viterbi permet
également des lissages avec délais. Cette
méthode présente un grand intéret dans le

cas des canaux de transmission haute fré-

quence.

SUMMARY

A new approach to non-linear estimation
is studied where the solution of the dyna-
mic equation is modeled as a finite state
Markov Chain. The Maximum a posteriori

M.A.P estimation problem can be solved
using a sequential search procedure such as
the Viterbi algorithm.

An application to the classical phase
tracking problem is given and the results
are compared to the Extended Kalman filter
results; in that case the improvement is
striking when the noise level is high.

The Viterbi algorithm allows filtering as
well as sequence estimation and fixed-lag
smoothing with a small computational com-
plexity. Also an application to demodula=
tion with Radio Frequency channel is pre-

sented.
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Finite State Models

for Non-linear Estimation
I Introduction

Given a dynamic system with discrete
time representation such as

Xpe1= f(xk> + g@k’wk)

Y, = h(Xk> +
where the state process X

k

noilse process Wk and the observation process

71/
/2/

is driven by the

Yk is perturbed by the noise process Vk.

<:Wk and V. are independant i.i.d. processe%

k
The task of non-linear filtering is to es-
timate the state Xk given the observation

k

up to time,k‘go = (y1,y2,...yk).However
estimates of the state Xk with nice proper-
ties such as the minimum variance estimate
A
Xy, 5= B | XYy

mum a posteriori ,require the computation

or the M.A.P estimate Maxi-

of the conditional distribution of the state
given the observation.This computation via
the conditional density has led to very
complex algorithms not always easily instru-
mentable even with the most powerfull digi-~
tal computer,

Most of the efforts to find instrumen-
table solution to the non-linear filtering
problem have been concerned with the gene-
ralization of the Kalman Filtering technique
and are thus known as "Extended Kalman Fil-
ters".They provide good results in many
cases,however in high noise environment they
do not perform satisfactorily Phenomenon

of ten called Kalman Filter divergence .
Finite State Models

We propose here a new approach to non-

- linear estimation that seems better suited

to the high noise case, without having the
computational cost that the so-called "true
non~linear filters" have. We realise a fi-
nite partition quantization of the state

space E; with M elements and we construct

a finite State Markov Chain on S,, that

M

matches the original dynamic process descri-
bed by /1/; this is possible provided the
equation /1/ admits a stationary solution.
Hence the approximation does not lie in the
estimation but in the model itself. A Finite
State Model for the equation /1/ is given by
the state space SM and the transition proba-
bilities

pij Pr < Si_—9 SJ> i,j = 1,...,M,

(==

=

Finite State Model

Fig. 1.

Sequential estimation

The advantage of the finite state des-
cription is that we have only a finite num-~
ber of state trajectories. The modified non-~

~ linear filtering problem can be posed in
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the following terms: "Among all possible

trajectories, find the one that maximizes
a given performance index and thus best
accounts for the observation". If we denote
by‘:glg the set of all state trajectories

of length N the modified problem is stated

as follows:

N
C e Sy /3/
Yk=g(xk)+vk K= 0,1,2,.0.,N /U
the maximum a posteriori eatimate XMAP
maximizes the conditional density
£ =al  o(/0) /5/
MAE xNeSN
0 [0}

we can write also
N
& omax! D [ 10gP(Y, /X, ) +
Pwar moen = [T VKW
0 0
+ IOSP(Xk/Xk-t)

and if we define

m(xk,xk_ 1;Yk) = logP(Yk/Xk) +
+ logP(Xk/Xk_D )
N

o = max™! m(X, ,X, ;Y
Oyap x‘f,ef?,z (X Ko k) /6/

1

and this modified non-linear filtering pro-
blem amounts to minimizing a metric in a
tree, hence it can be solved using a sequen-

tial algorithm.
The Viterbi algorithm

Among all sequential search procedures
we shall rely particularly on the Viterbi
algorithm. The idea of using the Viterbi
algorithm together with a finite description
of the dynamic system, has been first sugge-
sted by J.K.Omura [1] .

The Viterbi algorithm was introduced in

relation to the decoding of convolutional

codes. The trees generated by such codes

have a strong regularity since the encoder
has a finite memory and this allows us to

described them by a trellis diagram.

Fig.2. Trellis diagram and Viterbi

algorithm

The original state sequence is represen-
ted by a path on the trellis; the estimated
state sequence is given by the path on the
trellis that most closely matched the obser-
vations in term of the metric . In compa-
rison with other tree search algorithms the
Viterbi algorithm does an exhaustive search
with a minimum complexity. Omura in [2]
has shown that the Viterbi algorithm is the
same as the forword dynamic programming
algorithm. Specialized processors that per-
form the Viterbi algorithm efficiently are
quite common in the industry.

The succes of the Finite State Model
approach depends much on the existance of low
complexity Finite State Models (F.S.M.)

A general algorithm has been established to
construct a F.S.M.

for a stationary Markov

process [3] . The rate-~distorsion theory
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and its related concept of d - distance
between processes provide us with some in-
sight in model design as well as a relation
between the fidelity and the complexity of
the F.S.M. [3] , PP 30,45.1In what follows we
give a practical example of implementation
of a filtering algorithm via F.S.M, The
simple example of phase tracking is a clas-
sic of non-linear filtering and a somewhat
similar filter making use of the Viterbi

algorithm has also been suggested in [ﬁ]

with a different point of view.
II A Phase Tracking Problem

Phase tracking is the classic problem
of coherent communication. We take the phase
process to be described by a Random walk
on the circle.

Xk+1 =Xkegk /7/

éwhere ® denote the sum moduloc 2W and Wk is

a i.di.d sequence), In most of what follows

. . . . 2
we assume ¥W. is gaussian with varlancecrw.

k
however there is no such restriction on Uk
The observed data are given by
Y = A cosX, + V
1k k 1k /8/

Y =Asinxk+V

2k 2k

1 ad Vo

Gaussian processes with unit power spectrum.

where v are independant white

As suggested we shall use a F.S.M., for the
phase. The phase space (b,ZR) will be
gquantized into SM= (51’52""‘5M>

where s.is the interval

Sk
2% % 2m X
le-M’Mnk*"M}
. FAL .
céntered on 8y ='ﬁ_k , the transition pro-

bability matrix is then

Pij = Prob{xke s ""xk+1 € sj]

Reduced Complexity

It is interesting to note that in most
cases the phase variancetri will be suffi-
ciently small so that only transitions to the
nearest neighbor have a significant probabi-
1lity of occuring hence we can reduce further
the complexity of the model. The transition

probability matrix pij is then given by

(s,

1-p . s
- 0} i-
Pi (2 ) J

0 i-jg > 1
LS b1
where Py = Prob [ Wk € (—-Td— y M>

The reduced complexity Phase Model can be

i=j

1

represented by the state diagram of Fig.3.

Fig.3. A Reduced Complexity Phase Model

The metric for the phase tracking problem
can be computed easily. In the Gaussian case

plugging the conditional density
2

1 1
P(Y1k,Y2k/Xk) = 25 e%P - ‘—9_-{6{”‘-1& cost) +

. 2
+(Y2k - A slnxk) }

in the formula for the metric

m(Xk,Xk_1;Y1k,Y2k = In P(Y1k,Y2k/Xk> +

+ Ln P(XK/XK_1>
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yvields for an admissible transition

m(Xk,Xk_,‘;Y1k,Y2k) = A (Yuccos X, +

szsini-.xk> + Ln P(Xk/xk_ 1>
where P(Xk/xk_ 1) takes the two values

P, if X, =X, . and (1-po)/2 if X o= X .

The form of this metric is very well suited
to the realization of a fast tracking aligo-

rithm,
Comparison of Performance

The Viterbi algorithm can be used on
data sequences for a string of.about 100
data or as a causal filter or as a fixed
lag K estimator. When one compares this
phase tracking system to a causal system
such as the Extended Kalman Filter or a
Phase Lock Loop phase tracker the comparison
with our estimator is unfair, since we make
use of more data and thus allow for a slight
delay in the phase estimation. To make the
comparison more justified, it is more proper
to compare our results to those of a Fixed-
- lag extended Kalman smoother. One notes
however than to go from the Extended Kalman
Filter to the Fixed-lag K extended Kalman
smoother one has to increase the complexity
K~fold, wherever in the Viterbi phase tra-~
cker only slight modifications in the sto-
rage requirements are needed to go from
filtering to smoothing.,

In the simulations of Fig.4 we compare
our results to both Kalman filtering and
Kalman smoothing. We observe that the Viter-
bialgorithm is performing well in low noise
where EKF is nearly optimal

environment

and strikingly better when the noise level

increases.

)
015 Zﬁ Extended Kalman filter

Extended Kalman smoother
Viterbi algorithm
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Fig.4. Comparison of Performance for

Different Phase Trackers

The Viterbi algorithm is very robust wherev~
er Extended Kalman smoothing presents some
computational dangers (oversmoothing) that
allow it to be used only with caution.

Finally one would iike to show how
Finite State Models estimation can be succes-
full in simultaneously tracking the phase
and recovering the data in a communication
systen.

In a B.P.S.K. modulation scheme trans-
mitting one of two phases 0 or N over a
Radio frequency communication channel, let
. be the message taking values in o,
the received data, after taking the in-

~phase and guadrature components, are

AL cos(x k * uk) + V1k
Ak sin(xk + uk> + V2k

Yk

Y

1

Rk

where )(k is modeled as above, A, is slowly
varying and can be assumed constant for a

string of data. If one extends the state
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space SM = 51""’SM by taking into con-
sideration pairs()( kfuk) where

(xk,uk)e sy x {om}
the Viterbi algorithm still applies with
only slight modifications; and provides us
with simultaneous phase tracking and data

demodulation.

IXII Conclusion

This alternate approach seems to be
very promissing especially in high noise
environment or whenever the EKF methods
fail. Finite state models represent a
serious reduction of complexity over other
"true non-linear methods" such as those
involving the conditional density with a
discretization of the state space. The ori-
ginal complexity can be reduced by not
allowing all state transitions to be repre-~
sented and this only at a slight loss in

performance.
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