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RESUME

Cet article considdre le probléme de 1'exploita-
tion de la périodicité cachée dans des données
aléatoires afin d'effectuer (i) de la détection de
signaux, {(ij) de 1'estimation de paramtres de signaux
(v compris la fréquence et la phase du signal porteur,
et la fréquence et 1a phase de la répétition des
impuisions), {iii) de la classification de signaux en
fonction du typpe de modulation, y compris des signaux
noyés dans le bruit, et (iv) de 1'extraction snectrale,
qui est 1'estimation du spectre d'un signal modulé &

partir de mesures sur le signal perturbées par le bruit.

Le type de périodicité cachée considérée est une
périodicité du second ordre, ce qui inclut tous les
types de périodicités pouvant étre converties en une
cormosante périodinue additive (donnant naissance a
des raies spectrales) par une transformation quadra-
tique et invariante dans le temps. La pronriété de
périodicité du second ordre est caractérisée en termes
d'une généralisation du spectre statistique con-
ventionnel, qui est appelée le spectre cycliaue. Des
généralisations des analyseurs du spectre conventionnel
permettant 1'analyse du spectre cyvclique sont bre-
sentées, et i1 est expliqué comment les utiliser Tors
de problémes (i) - (iv). Deux simulations experi-
mentales démontrant 1'utilité de 1'analyse du spectre
cyclique lors de la détection de signaux et lors de
T'estimation de fréquences porteuses en modulation
d'amplitude avec suppression de porteuse sont pre-
sentées. Pour illustrer 1'efficacité de 1'analyse du
spectre cyclique en miljeu fortement bruité et en
environment perturbé, les données consistent en deux
signaux de méme puissance, & large bande, modulés en
amplitude, avec suppression de porteuse et présentant
des recouvrements de spectre significatifs et un
rapport signal a bruit pour chacun d'eux: SNR = -6dB.

SUMMARY

ABSTRACT

This paper considers the problem of exploiting
hidden neriodicity in random data for the nurnoses of
(i) sianal detection, {ii) signal pararmeter estimation

(including sinewave carrier frequency and phase, and

pulse-repetition frequency and phase), {iii) signal
classification according to modulation type, including
sianals hidden in noise, and (iv) spectral extraction,
which is estimation of the snectrum of a modulated sig-
nal from noise-corruoted measurements of the sicnal.
The tyne of hidden periodicity considered is second-
order periodicity, which includes all tynes of nerio-
dicity that can be converted into an additive neriodic
component (which gives rise to snectral lines) with a
quadratic, time-invariant transformation. The property
of second-order periodicity is characterized in terms
of a generalization of the conventional statistical
spectrum, which is called the cyclic spectrum. Gene-
ralizations of conventional smectrum analyzers that
accompTlish cyclic spectrum analysis are presented, and
it is expnlained how they can be used for problems (1)-
(iv). Two simulation experiments that demonstrate the
utility of cyclic spectrum analysis for signal detec-
tion and sunoressed carrier frequency estimation are
nresented. To illustrate the capability of cyclic
spectrum analysis in a high noise and interference
environment, the data consists of two equal-power,
broadband, amplitude-modulated, sunpressed-carrier
signals with sienificant snectral overlan, and the SNR
for each is SMR = -8dB.
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I. PROBLEM STATEMENT

Ilnen random data, x(t), contains hidden periodi-
city that is not an additive component, and therefore
does not give rise to spectral lines, then a common
approach to exploiting the periodicity for purposes of
detection and estimation (including synchronization)
is to transform the data so as to generate spectral
lines. The most commonly used devices for accomplish-
ing this are shown in Figures 1 and 2. The device 1in
Figure 1 is frequently used for modulated carrier sig-
nals, with «/2 ideally equal to the frequency of the
suppressed carrier, whereas the device in Figure 2 is
often used for modulated pulse signals, with T ideally
equal to half the pulse width, and o 1ideally equal to
the pulse repetition frequency. By tuning o and
possibly T, these devices can be used to detect hidden
periodicity and estimate periodicity parameters (fre-
quency and phase). Both devices are sometimes used
with signals containing both carrier and pulse modu-
Tation. However, these devices do not always perform
acceptably. For example for weak signals (such as
spread spectrum) in additive noise, they can require
an excessive amount of data or respond too slowly (due
to narrowness of bandwidth of output BPF).

The major objective of this paper is to put these
devices in perspective; i.e., to provide a basis for
understanding when and why they work or do not work,
and for designing alternative devices, with improved
performance. Specifically, we shall consider the most
general time-invariant quadratic transformation, which
includes as a special case that shown in Figure 3.
This device includes the two devices in Figures 1 and
2 as special cases, but this is not the most general
time-invariant quadratic device. For example, a par-
allel connection of a multiplicity of such devices is
more general. The most general time-invariant quad-
ratic transformation that can be used to generate
spectral lines from hidden periodicity is described in
the following definition.

Definition 1. A transformation of a waveform, say x{t),
into another waveform, say y(t), is gquadratic, time-
invariant, and stable if and only if there exists an
absoTutely integrableXfunction k(u,v) such that

y(t) = fw fwk(t-u,t-v)x(u)x(v)dudv R

-00 =G0

which is equivalent to

y(t) =f ~u)x(t-v)dudv . (1)

-00

j k{u,v)

The type of hidden periodicity for which such a
device can generate spectral lines is identified in
the definitions and theorems presented in Section II.

11. CHARACTERIZATION OF SECOND-ORDER PERIODICITY

Definition 2. A waveform, y(t), contains first-order
periodicity with frequency a if and only if T the para-

meter

T/2 .
4 vin L [ y(t)e 12 o (2)
I T | IT/2

exists and is non-zero.

Definition 3. The spectrum of y(t),

is defined by

A oo
)= {wRy(T)

-t : s
Integrable in each of its arguments

denoted by Sy(f),

e-iwaTdT (3)

Theorem 1.

1 T/2
R (1) = h‘mT[ y(t+r/2)y(t-t/2)dt . (4)
J Too ' ZT/2

A waveform, y(t), contains an additive sine-
wave component of the form

a cos(2mot+d) {5)

if and only if y(t) contains first-order periodicity
with frequency o, in which case
= 2w, = ara{n™} . 6
[m, | ¢ a{m} (6)
Moreover, in this case and only in this case, the spec-
trum contains the additive component (spectral line)

m% 12 [8(F-0)+8(F+a)] 7)
for which &§(f) is the Dirac delta.

Definition 4. A waveform x(t) contains second-order
periodicity with frequency o if and only if there exists
a stable, time-invariant, quadratic transformation of
x(t) into, say, v(t) such that y(t) contains first order
veriodicity (v(t) exhibits a spectral line) with fre-
quency o.

Theorem 2. A waveform, x(t}, contains second-order
periodicity with frequency o if and only if the para-
meter

T/2 .
Ree) & lim [ x(tsr/2)x(t-r/2)e Mt 20 (8)
T | 2772

exists and s not identically zero, as a function of t.

He shall call the function Ri(r) the cyclic auto-
correlation, and by analogy with (3), we shall call its
Fourier transform, Sa(f), the ¢yclic spectrum

i oAy

S¥(f) j ) g (2)

Hith f fixed, SX( ) is called a cyclic line spectrum
since it can be non-zero for only discrete values of a.

An important class of devices that introduce per-
iodicity into an otherwise random waveform is the class
of 11near periodically time-variant (LPTV) transfor-
mations.

Definition 5. An LPTV transformation of z(t) into, say,
Xx(t) is characterized by the sunernosition intearal

x(t) = fm h(t,u)z(u)du (12)

for which h(t+TO, u+T0) = h{t,u), where To is the

(minimal) period.

Let w(t) be a random waveforr with no

Example 1:
and Tet x(t) be the nulse-

second-order periodicity,
modulated waveform

1 0<t<T
c
amn

0 otherwise .

[

x(t) =

n=-o

w(nT Jp(t-nT ), p(t) =

Then x(t) is characterized by (19) with z = w and

o)

y §(u-nT )o(t-nT ) .

n=-oc

h(t,u) 2 (12)
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Furtherm?qe, it can be shown that Neither th? 3yc11c autocorrelation, (8), nor the cyclic
__P(f+ P*(f-q/2) - spectrum, (9), are directly useful because they are not
2 (f+o/2)P*(f-a/2) properly normalized. However, the function
)
N @ A SX(F)
Sp(f) =4 1 s,(fra/2en/T ), o= k/T, (13)  c(f) = £ (21)
L. [, (f-0/2)s, (Fra/2)
0 o # k/T which we shall call the autocoherence (or self coherence)
’ function, is indeed properly normalized, and is more

aenerally appropriate as a measure of the degree of
where k is an integer and P(f) is the Fourier transfomm second-order veriodicity in x(t) because of the proper-
of p(t). The cyclic 1ine spectrum for f = 0 is shown ties described in the next theorem.
in Figure 4.

Theorem 4. (i) The autocoherence function satisfies

Example 2. Let z(t) be a random waveform (possibly
containing second-order perjodicity), and Tet x(t) be
the carrier-modulated waveform

x(t) = z(t)cos(2nf t+e). (14)  for all waveforms x(t). (ii) The autoherence function
is jnvariant to linear time-invariant transformation,

e (F)] < (22)

Then x(t) is characterized by (10) with

(¢4 - O
h(t,u) = cos(2nf t+¢ )6(t-u). (15) Cy(f) = (f) , (23)
Furthermore, it can be shown that for whicz
SH(F) = l{Sa(f+f )+ SH(F-F ) + Sa+2f0(f)e-12¢ v(t) = f h{t-u)x(u)du , (24)
X 4 gf 0 " z 0 z
- i

+ Sg o(f)e 4. (16)  provided that H(f) # 0, where H(f) is the Fourier trans-
The cyc11c Tine spectrum for f = center frequency of . form of h(t).
" fry dlin Anca 3w sabls Al of &

o(f)s is shown in Figure 5, for the case in which 2% The following theorem is an important characteri-
conta1ns no second-order periodicity. zation of the autocoherence function.
Egamg}e 3. Let x(t) be the binary phase-shift-keyed Theorem 5. Let z(t) 4 x(t)eimt and y(t) 4 x(t)e_i“at.
signa @ Then Ci(f) is the cross coherence (mutual coherence) of
x(t) = cos[an0t+¢(t)], $(t) = jlw wnp(t—nTC) (17) 2(t) and y(t),
for which w_ = mv(nT_). Then for w(nT } = #1, we have S _(f)
n ¢ Cfy Bc (F) = — 2 — 7 (25)

x(t) = (1/m¢(t)cos(2nf t) , X vz [s,(F)s,(F)]
which is a comnosite of examples 1 and 2, and therefore for which syz(f) is the cross spectrum
Si(f) is given by {13) (with x(t) replaced by z(t) = -12WfT
(1/m)e(t)) and (16). The cyclic line spectrum for f=0 S _(f) 4 j dr (26)
is shown in Fiaure 6. yz o -yz

Since the LPTV transformation plays such a funda- Aqs 1 T/2
mental role in the introduction of hidden periodicities yZ(T) = }lﬂ)f {T/ZY(t+T/2)Z*(t—T/2)dt. (27)

into otherwise random data, the following theorem is

quite important to this subject. Example 4. Let x(t) be the amnlitude/phase-modulated

Theorem 3. Let h{t,u) represent an LPTV transformation, waveforn
(107, with period T , and let {g {t)} be the Fourier x(t) = a(t)cos[2rf t+e(t)]
coefficient funct1ons in the expansion - c(t)cos(2nf t) - s(t)sin(anOt). (28)
o iZﬂnt/TO 0
h(t,u) = § g (t-u)e (19) It can be shown that
N=eco

o _ Irpo o
The cyclic spectra for the response x(t) are determined R (1) = §[RC(T)+R5(T)]COS(2“foT)

by the cyclic spectra of the excitation according to

the formula + %[R%S(T)—Rgc(T)]Sin(ZWfOT)
o w a-(n+m)/T0
= _n- . ) -
RN (F=Ln-n/2T,)  EREF2To (1) 2P0 )k 20 o) 48 2M0 )]
6, (~F+lo/2-m/T DG (F+la/2-n/T 1), (20) i %{Rc§+2f°(T)+ng+2f°(T)‘Rcz_Zfo(T)‘Rsz_Zfo(T)]'
for which Gn(f) is the Fourier transform of gn(t). (29)

t) and s{t) contain no second-order periodicity, and

If cf
Now that we have defined and characterized the Sc(f) z Ss(f) =0 for |f| > £ then (25) yields

type of hidden periodicity that can be converted into
soectra] lines with a quadratic device, we need to
formalize the intuitive notion of the degree (strength)
of a periodicity that is hidden in a random waveform.
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[s,(F)-5 ()17 + 4lRe(s_ (F)}T°

[s,(F)+5,(})1 - a(Ings_ ()17

|C(F)]= (30)

for |af = 2f_, and C (f) = 0 for all other o. It

follows that |c§(f)} =0
that (x(t) is completely
only if

s.(F) = 5.(f),

(in which case we shall say
incoherent at a=2f0) if and

Re{SCS(f)} =0 . (31)

At the other extreme, it follows that |CG(f)| = 1 (in

which case we shall say that x(t) is completely
coherent at a=2f0) if and only if

s KetSCS(T)J £0 . (32)
One example of (31) is a single-sideband amplitude-
modulated signal for which s(t) is the Hilbert trans-
form of c{t). One example of (32) is a double-side-

band amplitude-modulated signal for which s(t) is a
scaled version of c(t).

Now that we have(1) defined and characterized the
type of periodicity that can be converted into spectral
lines with a quadratic device, and (2) defined and
characterized the strength of periodicity (degree of
coherence), we need to determine specific quadratic
devices that are particularly well-suited to generating
strong spectral lines. Two alternative implementations
of a general purpose quadratic device that can be tuned
to produce the strongest possible spectral lines with
the minimum amount of data, x(t), (or with the maximum
speed of response) are presented in the next section.

IIT. CYCLIC SPECTRUM AMALYZERS

Since all spectral lines. that can be generated
from x(t) with a quadratic device are identified by
the cyclic Tine spectrum, then a quadratic device that

generates spectral Tines with strength Si(f), for any

values of ¢ and f, will serve as a general purpose
line-generating device. Two alternative implementa-
tions of such a device, to be called a cyclic spectrum
analyzer, are shown in Figures 7 and 8. 1In all cases,

reliable estimates of Sz(f) are obtained only for

Ataf >> 1, for which At is the total integration time
{reciprocal bandwidth of output filters) and Af is the
resolution in f (bandwidth of input filters). The
resolution in o is Au = 1/At.

In a sense, the cyclic spectrum analyzer. device,
with tunable f and o, is equivalent to the device in
Figure 2, with tunable v and o, since it provides an
estimate of the cyclic correlation, and the cyclic
correlation and cyclic spectrum are a Fourier trans-
form pair, (9). However, analogous to the Tong estab-
lished fact that the periodogram is more useful than
its inverse Fourier transform, the correlogram, for
studying first order periodicity, it turns out that in
many cases of practical interest, the cyclic spectrum
analyzer 1is more useful than the cyclic correlation
analyzer (Figure 2) for studying second-order periodi-
city [1]. One important reason for this is that one
can collect power at a specific cycle frequency, o,
by integrating the cyclic spectrum over appropriate
bands of f, and this is accomplished simply by adjusting
the center frequencies, and bandwidth, Af, of the input
BPFs in Figure 8, or by adjusting the Tocal oscillator
frequencies, f * o/2, and bandwidth Af of the input
LPFs in Figure 7. Whereas, to collect power with the
device in Figure 2, one would need to use a

multiplicity of delays, t. Moreover, for bandpass
signals, the individual contributions from different
delays, 7, would have to be appropriately weighted with
a frequency-shifted sinc function before being summed,
because the cyclic corrélation is an oscillatory function
of t for bandpass sianals.  In addition to collecting
power at a specific cvcle frequency, o, by appropriate
choice of f and Af, larger values of Af yield more
reliable estimates of the cyclic snectrum (integrated
over the band of width Af, centered at f); i.e., dedree
of randomness of the analyzer output, due to random
modulation of the perijodicity and to additive noise, is
Tower. when AtAf is larger [1

IV. DETECTIOM, ESTIMATION, AMD CLASSIFICATION

Since a cyclic spectrum analyzer, in effect, con=
verts hidden periodicity into spectral Tines, it can be
used together with a threshold device to automatically
detect the presence of hidden periodicity. By using the
normalization that produces the coherence function, (21),
the problem of setting threshold level is greatly
simplified.

Since additive noise that contains no periodicity
has a cyclic spectrum that is identically zero (for
o#0), then a cyclic spectrum analyzer can extract the
cyclic spectrum of a signal from the corruntive effects
of additive noise, n(t). For example, for any arbi-
TrariTy broadband amplitude-modulated signal, (14) (with
z{t) containing no periodicity), it follows from (16)
that the conventional spectrum of the amplitude is

Oy o120
5, (F) = 4s%(f)e

(33)

for a = 2f0, and this holds true also when additive

noise is present,

x(t) = z(t)cos(wa0t+¢) + n(t). (34)

fering ampTitude-modulated signals can be determined
provided that their carrier frequencies are different,
regardless of the amount of spectral overlap.

Since the cyclic 1ine spectra for different kinds
of modulation are distinct (cf. examples 1,2,3), then
some signals (hidden in noise) can be classified by
measuring their cyclic line spectra.

V. SIMULATION EXPERIMENTS

Experiment 1.
To demonstrate the detection performance of a
cyclic spectrum analyzer, we consider a broadband ampli-
tude-modulated suppressed carrier sinewave in additive

white Gaussian noise (HGN), (34). The amplitude pro-
cess, z(t), is UGN that has been bandlimited, by a
s1iding-rectangular-window smoother (of width 8) to a
positive-frequency (first null) bandwidth of 0.125, to
yield a signal with power =1/2. Thus, the modulated
sinewave has power =1/4. The noise, n(t), is non-band-
limited (i.e., positive frequency bandwidth = 0.5) WGN
with power = 1. Thus, the signal-to-noise ratio is

SNR = -&dB. The suppressed carrier frequency is fo =

0.203. A data segment of length At = 2048 time-samples
was used in the simulation. The spectrum (periodogram=
]X(f)[2 = squared magnitude of FFT of data) of the noisy

signal, x(t), is shown in Figure 9a. Since there is no
additive sinewave comnonent in x(t), there is no spec-
tral line, and the signal cannot be detected from the
spectrum. The spectrum of the squared data is shown in
Fioure 9b. Although the squared data does indeed con-
tain a snectral line, it is masked by the noise, and
the signal cannot be detected. (It could be detected
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with sufficiently large At). The cyclic spectrum of
the data is shown in Figure 9c. In order to collect
power in the spectral line at o = 2f0 = 0.406, Af was

chosen to be quite large, Af = 0.125 >> Ax = 1/At
(whereas Af = 1/At for the spectra in Figures 9a and
9b). Even more power would be collected if Af were

chosen to be larger (Af = 0.25 = bandwidth of Sz(f)

would be optimal). It can be seen from Figure 9c that
the signal is easily detected. The cyclic spectrum
analyzer in this experiment was implemented by fre-
quency-smoothing (over [f-Af/2,f+Af/2]) the conjugate
product of frequency-shifted FFTs, X(f+a/2)xXf-0/2),
as suggested by Theorem 5.

Experiment 2.

To demonstrate the detection performance of a
cyclic spectrum analvzer when strong interference as
well as strong noise is present, we consider the sum
of two broadband amplitude-modulated signals in addi-
tive broadband noise. We consider precisely the same
model as in Experiment 1, except that two independent
signals, with suppressed carrier frequencies of
f, = 0.203 and f, = 0.328, are present. Thus, for

each of the two signals, SNR = -6dB, and the signal-
to-interference ratio is SIR = 0dB. Since the
positive-frequency bandwidth of each of these sionals

is 0.25, which is twice the carrier separation, f, —fo,

then these signals are indistinquishable in the
spectrum of x(t), and are, in fact, completely masked
by each other and the nojse.
signals is easily detected with the cyclic spectrum,
which is shown in Figure 10. As in experiment 1,

At = 2048 and Af = 0.125. However, a different imple-
mentation of the cyclic spectrum analyzer was used

in this experiment. Specifically, a digital imple-
mentation of the device shown in Figure 8 was used.
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