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RESUME SUMMARY

Dans cette communication nous présentons In this paper we present some new results
quelque nouveaux resultats sur 1'elaboration des on the design of robust filters for linear
filtres robustes pour la prédiction linéaire, prediction, interpolation and filtering of
1'interpolation et la filtrage des signaux random signals. It is assumed that some
aléatoires. On a présumé qu'il existe quelque uncertainty about their spectra exists, and the
incertitude sur leurs spectres, et 1l'elaboratien robust design optimizes for the least favorable
robuste est optimale pour les spectres les moins spectra.

favorables.
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Introduction

This paper considers the linear prediction,
filtering and interpolation of second order random,
stationary processes, under the condition that their
spectral structure is vaguely specified. 1In order
for the classical theory of linear prediction and
filtering of Wienmer [1] and Kolmogorov [2] to be
effective, it is imperative that the spectra of the
processes concerned be completely known. In this
paper we replace this assumption by a weaker one;
namely, we assume only that a certain neighborhood
of a spectrum is given and we construct optimal
in a specific sense linear filters, based on the
knowledge that the spectrum of the process belongs
to that neighborhood. We adopt the approach of
minimax design, which follows Huber's [3]
pioneering work on robust estimation, and we extend
the more recent work of Hosova [4] in several
directions, as will be made clear in the sequel.

Preliminaries and review of known results

In this paper we will assume that a noisy
version of a multivariate stationary process is
observed. Both discrete~time and continuous-time
cases will be considered. Let {Y(t); teIo} be the

observation record, consisting of the d-dimensional

process Y(t). The observation interval IO will be

either the continuous or the discrete time axis.
-The observation will be either noisy or noiseless.
In general,

Y(t) = X(t) + N(t); thO

where X(t) is the signal component and N(t) is
the additive noise. Suppose now that a linear,
time invariant filter with transfer function H
operates on {Y(t)} in order to produce an
estimate X(t) of X(t). Then, the covariance
matrix of the error X(t) - X(t) has the form: [5]

-1 4
Py(H, S, N) = (2%) [{Ee*" -

—
S 1IsO0 e - 1% + HEet Yy noymk et 1ar

(1a)
for discrete time observations, and

-1t
P.(H, 8, M) = 27 [ {HGE -

- I] SEw MG ~ I1* + HEWN(LwH* (iw) Mdw
(1b)
for continuous time observations.

S, N denote the spectral density matrices of
X(t), N(t) correspondingly. Whenver the argument

e* (iw) is used, we have a discrete (continuous) time
case. By H* ye denote the transpose conjugate of the
matrix H. Classical filtering theory has

resolved the problem of minimizing the error co
covariance matrix Pc’ Pd through an appropriate

choice of H, assuming N, S known and fixed.

For the discrete time case, if we let N=0 and
the observation record consists of the past only,
ie. Iy = {k; k<t} is used for estimating S(t),

then we have the pure prediction problem. The

natural criterion for choosing the optimal H
which is here constrained to be causal (HeC) is
the minimization of the trace of Pd' In classical

prediction theory [5] it has been established that
the resulting infimum is:

inf trace P,(H, S, O) = trace P, (H., S, 0) =
HeC d d‘o

m
= exp{(27d) " [ log det{2nS(3)1dA}

-1
The optimum causal Ho(z) is found through the

spectral factorization of S(A). Using the identity
log det A = trace log A, (for any positive
definite matrix A), we have that:
T
log det P,(Hy, S, 0) = (27)™" | log det

-7

[27S(X) 1dA (2)

If the right hand side of (2) is finite, ‘then S(\)
factorizes as: [5]

sy = 2m LeetM et

where ¢(z) is holomorphic within the unit circle
lz[ =1, with ¢(0) = Id. The transfer function

of the filter giving the best linear one-step
predictor, is

-1 X

e S TC OV G

H [e

6(
where [A(z)]+ means the terms of positive powers

of z only, in the Laurent series expansion of A(z).

Another case of interest in the discrete time
framework is the interpolation or smoothing
problem. If we let N=0, and the set I0 = {k; k#t}

is available for linear estimation of S(t), we have
the interpolation problem. If the trace of Pd(H’ S, O

is the optimality criterion, then the resulting
optimal covariance matrix for the interpolation
error, is: [5]

i
P (g, 8, 0) = wn’l [sThooan ™t 3
—~T

The optimal transfer function H0 has the form:

m
Hy = Ty - <2n)”1[l;s'1(x)dx]s*l(x)

For the case of nonzero noise and nonrealizable
filters H that act upon a doubly infinite data
record, we have a classical, tractable Wiener
filtering problem, for both discrete and continuous
time. We will not elaborate on this case, due to
space limitations. Robust solutions have been
obtained for the scalar (d=1) case by other authors

(fe] - (81).

For the case of nonzero noise and under the
constraint of causal or realizable filter H, the
problem is highly intractable in general. There is
one exception, namely the case of white noise, for
which analytical expressions for the minimum error
are available.

For continuous time observations, white noise
N(t) with a constant spectral density matrix NO’
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and for optimal causal filtering, the following
expression for the minimum achievable error
covariance matrix is available: [9]

-1
trace Pd(HO, S, NO) . NO =

¥ -1
= (2m)7" [ log|I + s(iw)Ny " |dw (4)

—00

The corresponding expression for discrete time
observations seems to have been derived in the
literature only for scalar processes, and has the
form: [10]

PC(BO, s, NO) = N

-1 7
O{l - exp EF—_{ log(l +

+ NO_lS(A))dA} (5)

In the present paper we address the problem of
designing linear filter functions H that provide
robust filtering solutions in the presence of
spectral uncertainty. The problem is stated in
the next section.

As a preliminary step, we observe that if we
define:

;e ey D
¢{d, S) = trace P{H, 8, XN) =

=

= ¢n7t {trace{HH* (S+N) - S(H+H¥*) + S}AX (6)

for either the discrete or continuous time case,
the functional Q is convex in H and linear in S.
This observation will be utilized in the robust
design. If Q(H, S) is the criterion, a robust
design seeks to minimize Q with respect to H and
maximize it with respect to S.

[
Robust estimation

Let us denote by Q(H, S) the generic
expression for the trace of the error covariance
matrix for both continuous and discrete time
problems. We will assume that N is known, hence
constant, and that S, H are members of compact
Hausdorff spaces F , Hl respectively. Due to the

convex-concave nature of Q(H, S), there is a minimax
value: '

min max Q(H, S) = max min Q(H, S) = Q(H*, S%)

HeHl SeF SeF HeHl

= max Q(H*, S) (7)
SeF

The existence of the minimax or saddle point
solution is a consequence of a theorem due to Ky Fan
[11}. Thus, to find the robust filter H*eHl, we
have to minimize Q(H, S) over HeHl and then
maximize the resulting minimum. According to the
previously mentioned results, we may use the
existing formulas and maximize them over SeF.

The maximizing value S* will provide us with the
robust filter H* matched to S¥*.

For the purpose of maximizing the minimum mean
square error expressions over classes of spectra,
we will develop two theorems.

Theorem 1

Let {Gi(fi); i=l, ..., d} be concave and
differentiable functions of fi. Let Fl be a
family of nonnegative functions fi(A); i=1, ... d4;

AeI, defined by

F1 = {f; i=1, ..., d: ui(A) < fi(A) <

< v (05 Ael; jfi(x)dx = 1;} (8)
I

where f = [fl . fd].

Define the functiomal:

d

o(f) = [ } G (£ (0))ar 9
I i=1

Then G(f) is maximized over feFl, by the function

£ = [£2 £3 ...

o
1 £5 fd], where

° = s T .

fi(A) max[ui(k), minfc,, Vi(X)]],

i=1, ..., d (10)
and the constant ey is uniquely determined by the
requirement that f;(l) integrates to 1.

(Proof is deleted due to space limiations; it
will appear in a journal version of this paper.)

Theorem 2

Let {Gi(fi); i=1l, ..., d} be concave

functions of fi. Let F, be a family of nonnegative

2
functions f£(})) = [fl(k), fZ(A), vens fd(k)]; Ael,

defined by:

d
F, = {£(); Ael; 'X £,(0d) = py;

Ik i=1

k=1, ..., m} ) ayn

where {Il, 1, v Im} is a partition of I. Then,

the functional

d
6(f) = [ T G (£,(A)da

I i=1
is maximized over feF2 by the functionms:
£.(0) = §_1 p,a, for Ael ; i=1, ..., d;
i k ki x’ 3 +ees 43
k=1, ..., m (12)

where 8y is the measure of Ik’ and the nonnegative

constants {ai} are determined from the set of

equations:
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(The proof is deleted due to space limitations;

it will appear in a journal version of this paper.)

We are now in a position to seek the least
favorable spectrum S by maximizing over S the
previous minimum error expressions. The
minimization will be performed for S belonging
to each of two distinct spectral classes, Fl’ F2,

Let fl(k), fz(k), .s fd(A)

be the eigenvalues of the spectral density matrix
S(A). Then, we define Fl to be the set (8),

and FZ to be the set (11).
that gives the optimum prediction error, can be
expressed in the form of eq. (9), with

Gi(fi) = log(Zﬂfi); i=1, ., d, which is a concave

defined as follows.

We note that eq. (2)

function of fi' Thus, through direct application

of theorems 1 and 2 we can immediately identify

the maximizing spectra of families Fl and FZ’

as specified in the theorem statements by
equations (1l0) and (12) respectively.

The next case under consideration is for
the causal filtering problem in white noise.
We assume NO’ the white noise spectrum, to be

constant and known. We redefine the functions
fl(w), fz(w), ++v» £5(w) as being the eigenvalues

of the "whitened" matrix S(iw)NO—l, and we use

eq. (4) as the optimality criterion. It is easy
to see that eq. (4) can be expressed in the form
of eq. (12), with Gi(fi) = log(l + fi)’ which is

a concave function.
uncertainty classes F

1f we consider the spectral
10 FZ’ where we use the re-

defined eigenvalues fi(w), then Theorems 1 and 2

are immediately applicable for determining the
maximizing spectra, given by equations (10) and
(12). A similar approach yields the maximization
over S(}) of eq. (5), for the discrete time case.

Conclusions

In this paper we have developed robust
solutions for the filtering and prediction problem
when there is uncertainty about the spectra.

We treated the case of multivariate stationary
processes, for discrete time and continuous time
situations. We developed explicit robust
solutions only for the cases for which the
available error expressions are in closed form.

The spectral classes we considered are
motivated by realistic uncertainty conditioms.
The first class Fl’ specifies the spectral density
matrix through an upper and a lower bound to
each eigenvalue. Those bounds can be viewed as
confidence intervals for an available estimate
of the spectral density matrix.

The second class, F.,, characterizes the

2

spectral that are known only through the total
power of each eigenvalue in a given frequency

interval, T

can be viewed as a

Thus, F2

K*

"total power' constraint.

only with linear robust filters.

Finally, we observe that our theory deals
Some

statisticians believe that truly robust filters

must be nonlinear.

However, the introduction of

nonlinearieties would make the error expressions

very cumbersome.

The problem is still open,

challenging, and of great interest to both
theoreticians and practically motivated researchers.
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