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RESUME

Dans cet article, nous discuterons de la
modélisation en termes d'opérateurs, de processus
stochastiques. Nous montrerons que le modéle MA
(moyenne variable), lequel est le plus largement
employe, le modéle AR (autorégressif) et le modeéle
ARMA (autorégressif a moyenne variable) peuvent
s'exprimer sous la forme d'cpérateurs lindaires. Un
modéle théorique d'opérateur, plus général, permet la
géhéralisation de ces modéles spécifiques. Partant
des inégalités de norme de l'opérateur nous
definissons des limites supérieures du carré moyen de
1l'erreur dans le cas ou le véritable modéle du signal
est remplacé par un opérateur approximatif mais
facilement inversible, qui génére le signal.

Puis nous ultiliserons une approche par opérateur
théorique pour déterminer la structure d'un processeur
espace temps, optimal afin d'isoler les signaux
propagés a travers un milieu de transmission
stochastique. On suppose que le signal est noyé dans
un bruit coloré, amnisotropique et variable dans le
temps. La structure du processeur est exprimée a
1'aide d'opérateurs qui représentent le milieu de
transmission stochastique, le champ de bruit, les
diffuseurs aléatoires, les generateurs de faisceaux
ect. On applique le théoréme de décomposition polaire
des opérateurs lindaires bornés pour établir la
possible factorisation due processeur espace temps.

On utilise les concepts de transformation de
contraction stochastique pour étudier la convergence
d'algorithmes adaptatifs dont on se sert pour réaliser
le processeur espace temps.

I. INTRODUCTION

It has been pointed out that an operator-
theoretic formulation of signal processing and model-
ing problems provides a unifying framework for the
signal detection, extraction, modeling, and data
deconvolution problems [1,2,3]. The powerful machin-
ery of functional analysis can be brought to bear on
these problems. It is particularly convenient to
formulate the signal processing problems as operator
problems in a Hilbert space because of the geometrical
interpretation of the Hilbert space, and because many
answers to the signal processing problems can be
recognized as inner products in a Hilbert space [1].

In this paper, we will discuss modeling of sto-
chastic processes in terms of operators. We will show

SUMMARY

In this paper, we will discuss modeling of
stochastic processes in terms of operators. We will
show that the widely used moving average (MA),
autoregressive (AR), and autoregressive moving average
(ARMA) models can be expressed in terms of linear
operators. A more general operator—theoretic modeling
allows generalization of these specific models. Based
on operator norm inequalities, we derive upper bounds
for the mean square (signal deconvolution) error for
the case where the true signal model is replaced by an
approximate but easily invertible operator which
generates the signal.

Then we will use an operator-theoretic approach
to derive the structure of an optimal space-time
processor for extraction of signals that have
propagated through a stochastic transmission medium.
It is assumed that the signal is immersed in a
colored, anisotropic, and time—-varying noise. The
processor structure is expressed in terms of operators
that represent stochastic transmission medium, noise
field, random scatterers, beamformers, etc. The polar
decomposition theorem for bounded linear operators is
applied to establish the factorability of the
space-time processor. Stochastic contraction mapping
concepts are used to study the covergence of adaptive
algorithms that are used to realize the space time
processor.

that the widely used moving average (MA), auto—
regressive (AR), and autoregressive moving average
(ARMA) models can be expressed in terms of linear
operators. Obviously, general operator-theoretic
modeling allows generalization of these models. Next,
we will address modeling of stochastic transmission
media in terms of stochastic operators. Then we will
use an operator-theoretic approach to derive the
structure of an optimal space—-time processor for
extraction of signals that have propagated through a
stochastic transmission medium. It is assumed that
the signal is immersed in a colored, anisotropic, and
time-varying noise. The processor structure is ex-
pressed in terms of operators that represent sto-
chastic transmission medium, noise field, random
scatterers, beamformers, etc. The polar decomposition
theorem for bounded linear operators is applied to
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establish the factorability of the space-time pro-
cessor. Stochastic contraction mapping concepts are
used to study the convergence of adaptive algorithms
that are used to realize the space—time processor.

In this paper we will consider finite variance
complex stochastic processes x(t,w), y(t,u), x(t,u),
y(t,w), t € T and w ¢ @ define on the probability
space (Q,F,P). Lower case letters denote scalars,
underlined lower case letters denote vectors, capital
letters operators, and underlined capital letters
matrix operators. Later, for notational convenience,
we shall drop arguments w and t if they are not needed
for clarity. In this paper, we will consider sto-—
chastic processes and operators defined on complex £
or Lo Hilbert spaces with inner products

SORIOI 20! y*<w>} .

and

<x(t,w), y(t,w)>L = E {i x(t,w)y*(t,w)dt} (2)
2

where T denotes transpose and * denotes complex conju~
gate. The norm of x(t,w), denoted by Ix(t,w)!, in the
Hilbert space is by definition <x(t,w), x(t,w)>1/2 and
the norm of a bounded linear A operator is

sup{lAxl; Ixl = 1},

Since complex separable Ly and %, spaces are iso-
morphic and isometric [4], we can use either Ly and 2,
spaces at our convenience; that is, we can carry out
analysis in either space and then use the results in
the other space. In signal processing terms, the iso—
morphism between %29 and Ly spaces means that discrete
time signals are isomorphic with continuous time
signals. We can use either integral operators or
matrix operators for our analysis.

II. MODELING OF STOCHASTIC PROCESSES

Moving average (MA), autoregressive (AR), and
autoregressive moving average (ARMA) models have been
widely used to characterize stochastic processes
[5,6). These models have found wide application in
linear prediction and system identification. In this
section we will show that MA, AR, and ARMA processes
can be defined by appropriate linear operators. This
approach allows one to use the results from operator
theory to study properties of these stochastic pro-
cesses. In particular, operator theoretic inequal-
ities can be used to determine a bound on the mean
square error that occurs when an exact model for a
stochastic process is replaced by an approximate but
easily invertible model (widely used AR model, for
example).

Let &(t), t = 0, t1, ... be a sequence of un-
correlated random variables such that E{Z(t)} = 0 and
E{£2(t)} = 02, then a finite moving average process is
defined by*

n
x(t) = ) a.g(t-j), t =0, £1, ... (3)
catp 3
and if
Y oal<cw )
j:-—oo J

an infinite moving average process is defined by

o

x(t) = 7}

j:—co

ajE(t—j) . (5)
Both MA processes can be defined by

x(£) = ME(E) =) a.od E(t) (6)

ju
J

where uj is a unitary (shift or delay) operator [7].
Since M is a bounded linear operator on a Hilbert
space, polar decomposition theorem is applicable [8].

The finite autoregressive process of order q is
defined by

]
j=0

and infinite autoregressive process is defined by

bj x(t=j) = &(t) t =0, *1, ... (7)

§ b, x(t-j) = &(t) t =0, 1, ... (8)

P J

j=0

where bO =1, ) b? < =, and E{x(s)£(t)} = 0 for all
j=0

s <t~ 1, and £(t) is a white noise process with zero
mean and variance 2. In the operator notation we
have

B(x(£)) = ) b.ud(x(£)) . 9
j=o0 3

The autoregressive moving average process (ARMA) is
defined by

? d,.x(t=j) = § e, E(t-k) (10)
j=0 3 k=0
or in operater notation
B(x(t)) = C)&(tr)) (11
where
q .
D( )= ) d.J( ) (12)
j=o
and
P k
c( ) = l c U «C ). (13)
k=0
We can express the ARMA process by
x (0 = 07! ctee)) (14)
the AR process by
x,(£) = BT (E(t)) (15)
and the MA process by
x,(€) = M(E(E)) . (16)

This demonstrates that all three processes can be
expressed in terms of linear operators which operate

* For notational simplicity, we do not use w in
this section to denote stochastic processes.
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on the uncorrelated noise process. The essential
properties of these processes can be determined from
the study of their defining operators. MA, AR, and
ARMA models can be generalized by using more general
operators in their definitions. This seems to be
appropriate for the signal processing and system
identification problems.

III. MODELING ERRORS

In many system modeling, identification and de-
convolution application of an autoregressive or all-
pole model is used. The reason for this is two—fold:
first, the inverse filter for the all~pole model is a
simple all-zero filter which can be easily implemented
by adaptive linear prediction filters [6]; the second
reason is that adaptive identification of an all-pole
model by a simple all~zero inverse filter is equiva-
lent to the maximum entropy spectrum analysis [9]. It
is important to determine an upper boundary on the
mean square error when a more general process or model
is replaced by an all-pole (AR) model, For this end
we derive an operator inequality that has been used to
bound the error incurred when an arbitrary kernel of a
Fredholm integral equation is replaced by a degenerate
kernel, i.e., an exact operator equation is replaced
by an operator equation with a known inverse [10}]. A
similar approach is applicable to the approximate
modeling of stochastic processes. Let us consider a
pair of operator equations

B xo(t,w) = g(t,w) {in

A x(t,0) = £(t,0) , (18)

where B is the AR operator defined by Eq. (9), &(t,w)
is the uncorrelated noise process defined in the
previous section, and A is the actual operator with
unknown inverse. We note that if operator B is given
in terms of the poles of the filter, its inverse is
given by the zeroes that are at the same location as
the poles of the B, We would like to determine an
upper bound for the norm

Ix(e,0) = x (t,0)l = | AL Ee,e) - B E(t,w)l
(i?)
From Eq. (17) and (18) we have®
IPICS SR |
- (A B )&
=3 l@-mate
=gl at e, (20)
where A is the difference between the approximate
model and exact operator, i.e.,
A=(B~4, (21)
hence
A=B+4=0B1I+BE"a) (22)
st a7t (23)

where I is the identity operator. 1f
p=1381la1<1, then [11]

1

(r+e iy o -5l s G tn? - ... e

Hence,

- x I < 187 1an w(r + B'IA)‘lu 184 g
saup tan ur - 3+ 72 L st e
<p(l +p + p2 o s b
=2 g™l e (26)

1-p

or

2 92

Ix - x 17 <
°  (1-p)?

which is the desired result that allows us to evaluate
the signal modeling errors.

1

T uau2 s 27

IV. MODELING OF STOCHASTIC TRANSMISSION MEDIA

Wave propagation in stochastic medium is deter—
mined by a linear differential equation which has sto-
chastic coefficients and stochastic boundary condi-
tions. The solution to this problem can be written in
terms of an integral operator [2, 12]. The kernel of
the integral operator is "random Green's function,” or
the impulse response of the linear stochastic
(randomly time-varying) transmission channel.

There are three possible ways one can define the
impulse response of a linear time—-variant channel
[13]. We use the definition that has useful inter-
pretations for use in random scattering and that has
convenient Fourier transform relatioms [12, 14, 15].
Let h(t,T,w) be the response of a randomly time-
varying channel at time t to a unit impulse applied at
time T. T can be interpreted as the round trip propa-
gation delay to the backscattering site. The output
of the randomly time-varying linear channel is

y(t) =1 h(t,7,0) x(t-1)dT (28)

O~ 8

The causality condition requires that h(t,t,0) = 0 for
T < 0.

In the operator notation, we have

y(t) = L x(t) (29)
where
I
L )= J dt h(t,t,0) u'( ) . (30)
0
uT is the previously used delay operator. A simple

example of the single channel propagation is the
special case of distinct multipath propagation. In
such a case we have

N
y(t) = J ) ai(t,w) 5(1—11) x(t-T)dt

0 i=1
N T,
=} a.(t,w)u *x()
i=1 *
= [a(t,w) 6"1T x(e) (31)
where the elements of vector fa(t,w)uT] are
ai(t,w)uTl. Hence,
N Ti
L )= 3§ a; (t,0) w 7(C )
i=]
= fa(e,w) w"1TC ) . (32)

Wave propagation in a more general linear stochastic
transmission medium involves the application of sto-
chastic integral operators. The output at time t and
at a field point F is given by

*

To simplify the notation we have dropped t and w
from the arguments.
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y(t,T,w) = J h(E,7',t,T,0) x(t-t,F~F') dv dr, (33)

o —8

w e §

where V indicates volume integration and h(r,r',t,T,w)
is a "random Green's function" {[12]. This is in
operator notation

L( ) = J j dv dt h(F,E',t,T,0) uTuf'( ) . (34)
vo

Frequently, in spatial signal processing applicatioms,
we are interested in a vector of signals

y(?l, w)
. ( -
y(t,w) = y(?i,t,w) = J J h(f,f’,t,‘r)u‘ur x(t,r)dvdt
. Vo
y(T ,t,0)

L x(t,%) . (35)

In this case L is an n x ] matrix. A special case of
interest is the case when the source is in far field.
Then

1

Y
oo lil
N
y(t,w) = J'j h(R,t) u u M ox(t) ar (36)
' T

c

where R is the distance to the center of the array, uT
is the delay operator that corresponds to the propa~
gation delay to the center of the array, and utl s
the delay operator corresponding to the differential
delays to each space sample. The differential delay
vector obviously contains information from which
direction of the source can be determined. The con-—
cept of beamsteering makes use of this information. A
uniformly shaded beamformer is simply

s ST, ~T
L( ) = [; 1...u teou é] ¢ ) (37)

that is a row vector of shift operators that will
compensate for differential propagation delays so that
a signal from desired look direction is brought into
time-coincidence. An operator for an M output beam-—
former is an M x N matrix of shift operators, where N
is the number of sensors.

All the linear operators, scattering operator Lg,
propagation operator Lp and beamformer Lp, can be
cascaded so that

) =Ly ng( ) . (38)

In the next section, we will assume that the
linear operator L is a cascade of operators that are
pertinent to a specific problem. We note that the
beamformer operator is a deterministic operator where-
as the propagation and scattering operators are sto-—
chastic operators [2,12].

V. SIGNAL EXTRACTION AND DETECTION
Let the received signal vector r(t) be

r(t) =L s(t) + n(t) (39)

where L is a linear operator, s(t) is the signal of
interest, and n(t) is the interfering noise with the

covariance matrix Rp(t,u). In general, n(t) can be a
nonstationary, colored, anisotropic noise field. To
illustrate the essential operator-theoretic ideas, we
assume that r(t) is a Gaussian process. Signal and
noise are assumed to be complex, zero mean, mutually
uncorrelated processes. Three cases are of interest

1. L is a known linear operator,
2. T is an unknown deterministic operator,
3. 1 is an unknown linear stochastic operator
T with known or determinable covariance
matrix.

In this paper we will emphasize the third case., It is
of interest to estimate L s. It is well known that
the best estimate in sense of quadratic cost of y,
given data vector r, is the conditional mean E{z?i}
[16]. For zero mean, complex Gaussian distributions,
the conditional expectation is given by [16]

E{y/r} = (40)

12 22

where Cj7 and Cp9 are elements of the joint covariance
matrix of vectors y and r; that is,

°11 ‘12
€1 C2
- H = Hy _ H =
with C11 ={E y y'} C12 s{Eyr} = Cyp» and Gy,
E{E_EF}. Hence,
y = (Ls) = E Ls/x
=B e ELELY +R 17 2 (41)

where P is E{E_EH} for stochastic signal or simply
s fﬁ for deterministic signal. It can be shown that
the log likelihood function is given by

H H -1 H-1_ AH -1
2 - ez e + 207 'R @
(42)
This equation defines the signal processor
structure shown in Figure (1). The log likelihood

ratio detggyor computes the inner product of two
vectors (L s), the mean square estimate of the signal

INNER PRODUCT

r=Llsith+ o) 24

)

=
(%)

[feet'pn] Sl eledt)

OPTIMUM ESTIMATOR OF L S

Figure 1. Maximum likelihood detector for

stochastic signals.

and medium transformation, and Bfl I, adaptively

T
whitened received vector. We note that {L s} can be
factored into two operators [E{L P LH} + gn] 1 and E{L
P LH} The first operator can be determined by usual
adaptlve techniques from the received data given
hypothesis Hj. The second operator E{L P LH} can be
determined from the a priori statistics of the sto-
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chastic channel and signal. Dr. Ricker has pointed
out that sequential estimation techniques can be used
to estimate E{L P LH}. This would lead to sequential
detector/estimator structures. It should be pointed
cut tha;\for likelihood detection ome needs to esti-
mate {L s} not L or s} that is, the deconvolution of L
S is not necessary. It can be shown that the operator
E{L P L} can be expressed in terms of generalized
scattering functions [15, 21} and stochastic Green's
functions [2, 12].

VI. APPLICATION OF POLAR DECOMPOSITION THEOREM

The polar decomposition theorem in operator
theory states that every bounded linear operator T on
a Hilbert space can be expressed as [8]:

T=81U (43)

or

T (44)

u's!

where S (resp. $') is self-adjoint and U (resp. U') is
a partial isometry.*

This theorem has an interesting interpretation in
the study of space-time processors. For this purpose,
consider a simple beamformer for plane waves with uni-

J §(t-u + <s*r>/c) x(u,s) ds du (45)
ir? ir

The purpose of U is to bring all plane waves [that is,
functions of the form f(t —<re1>/c)] coming from a
direction given by the unitJTéEgth vector 1 & 1IR3
"time—coincidence” at the output (<> denotes inner
product in IR3; c denotes the velocity of propa-
gation). Equation (45) is the operator representation
of a continuous aperture beamformer, where the Eq.
(37) is the vector representation of a beamformer for
a discrete aperture. It is straightforward to show
that Equation (45) corresponds to a partial isometry
since

into

2

IlUxII2 = Ixl® vx e H T

Ly

=0 x=26 (46)
so the subspace M = H, ML = {6} (more strongly, U
turns out to be a unitary operator).

The case of nonuniform shading can be included by
multiplying Equation (45) by a "spatial window”

B)(t,0) & v o (t,n)

where w(+) is some real~valued function of r. The
"multiplicative"” operator given by:

(47)

(sx)(t,x) = w(r)x(t,r) (48)
is obviously a self-adjoint operator since:
<Sx,y> = <x,Sydy (49)
¥x,y ¢ f
Thus, our far field beamformer can be written as:
B =50, (50)

a special case of the polar decomposition theorem.

VIII.

VIL. ADAPTIVE PROCESSORS AS STOCHASTIC OPERATORS

In our context, an adaptive processor can be
defined as a stochastic operator on the space of
received "signals” or random processes. A recursive
adaptive algorithm corresponds to a recursive defini-
tion of a sequence of random mappings which converge,
in some sense, to the "desired" processor. Thus, in
the framework of adaptive implementation, we are con-—
cerned with the convergence of a sequence of sto-
chastic operators. While deterministic fixed-point
theorems such as the classic Banach contraction
mapping theorem play a major role in deterministic
convergence problems [17], probabilistic versions of
certain well-known fixed-point theorems can be
important in establishing convergence conditions in a
probabilistic sense. Although fixed-point theorems in
probabilistic analysis have been extensively studied
[18, 19], most versions seem to use an "almost every-—
where"” convergence condition. Due to our definition
of "distance" (or norm) in the stochastic space and
since the physical interpretation of average power
leads to the mean square convergence criterion as a
more widely accepted concept, we have used a mean °
square version of a stochastic contraction mapping
theorem. Details have been reported in previous
papers [3, 20] and a forthcoming dissertation [22].

CONCLUSIONS

In this paper, we have given a number of examples
which show that operator theoretic approach provides a
unifying framework for signal processing and modeling
problems. These problems include modeling of sto—
chastic processes and transmission channels, deri-~
vation of structures for optimum space-time proc-
essors, factorability of space~time processors, and
use stochastic contraction mapping concepts to study
the convergence of adaptive algorithms. We expect the
operator—-theoretic approach to signal processing will
be a rich area of researcht
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